Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(10): 15271-15288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38289549

RESUMEN

Continuous understanding of the ongoing ocean acidification (OA) is essential for predicting the future impact of OA on marine ecosystems. Here we report the results of open ocean time-series measurements (19 cruises) of seawater pH in total hydrogen ion scale (pHT) and associated parameters in the Arabian Sea (AS) and the Bay of Bengal (BoB). During southwest monsoon (SWM), the pHT within the 30 to 100 m water column shows the maximum difference between the two basins with BoB pHT being lower (up to ~0.39 units) than AS which could be due to freshwater influx from rivers, mixed layer dynamics, and cold-core eddies. However, during Spring inter-monsoon (SIM), the pHT of BoB follows the trend of AS. A contrasting finding is that the lowest pHT occurs at 350 to 500 m in the BoB while it is ~1000 m in the AS. The pHT within the 150 to 1500 m layer of these two basins shows lower values by 0.03 (±0.02) in the BoB as compared to the AS. The possible reasons for the low pHT within the BoB oxygen minimum zone (OMZ) could be due to intrusion of western Pacific water in the BoB, freshwater influx from rivers, variations in OMZ of the two basins, higher temperature (~2°C) within the OMZ of the AS, and denitrification in the AS. The pHT in both the basins (500 to 1000 m) is lower than in the North Atlantic and higher than in the North Pacific waters; however, the pHT in the 200 to 500 m is lower in the BoB than in all these basins. This study highlights the under-saturation of calcium carbonate at very shallow depths (~ 100 m) in the BoB, indicating that the plankton in the BoB are facing a major risk from OA compared to the AS and need further investigation.


Asunto(s)
Ecosistema , Agua de Mar , Bahías , Concentración de Iones de Hidrógeno , Agua , Oxígeno
2.
Sci Total Environ ; 879: 162941, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36934917

RESUMEN

Global oceans are witnessing changes in the phytoplankton community composition due to various environmental stressors such as rising temperature, stratification, nutrient limitation, and ocean acidification. The Arabian Sea is undergoing changes in its phytoplankton community composition, especially during winter, with the diatoms being replaced by harmful algal blooms (HABs) of dinoflagellates. Recent studies have already highlighted dissolved silicate (DSi) limitation and change in Silicon (Si)/Nitrogen (N) ratios as the factors responsible for the observed changes in the phytoplankton community in the Arabian Sea. Our investigation also revealed Si/N < 1 in the northern Arabian Sea, indicating DSi limitation, especially during winter. Here, we demonstrate that rice husk with its phytoliths is an important source of bioavailable DSi for oceanic phytoplankton. Our experiment showed that a rice husk can release ∼12 µM of DSi in 15 days and can release DSi for ∼20 days. The DSi availability increased diatom abundance up to ∼9 times. The major benefitted diatom species from DSi enrichment were Nitzshia spp., Striatella spp., Navicula spp., Dactiliosolen spp., and Leptocylindrus spp. The increase in diatom abundance was accompanied by an increase in fucoxanthin and dimethyl sulphide (DMS), an anti-greenhouse gas. Thus, the rice husk with its buoyancy and slow DSi release has the potential to reduce HABs, and increase diatoms and fishery resources in addition to carbon dioxide (CO2) sequestration in DSi-limited oceanic regions such as the Arabian Sea. Rice husk if released at the formation site of the Subantarctic mode water in the Southern Ocean could supply DSi to the thermocline in the global oceans thereby increasing diatom blooms and consequently the biotic carbon sequestration potential of the entire ocean.


Asunto(s)
Diatomeas , Oryza , Fitoplancton , Concentración de Iones de Hidrógeno , Agua de Mar , Océanos y Mares , Silicatos , Silicio
3.
Environ Sci Pollut Res Int ; 30(14): 42351-42366, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36648723

RESUMEN

Oceanic calcifying plankton such as coccolithophores is expected to exhibit sensitivity to climate change stressors such as warming and acidification. Observational studies on coccolithophore communities along with carbonate chemistry provide important perceptions of possible adaptations of these organisms to ocean acidification. However, this phytoplankton group remains one of the least studied in the northern Indian Ocean. In 2017, the biogeochemistry group at the Council for Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO) initiated a coccolithophore monitoring study in the eastern Arabian Sea (EAS). Here, we document for the first time a detailed spatial and seasonal distribution of coccolithophores and their controlling factors from the EAS, which is a well-known source of CO2 to the atmosphere. To infer the seasonality, data collected at three transects (Goa, Mangalore, and Kochi) during the Southwest Monsoon (SWM) of 2018 was compared with that of the late SWM of 2017. Apart from this, the abundance of coccolithophores was studied at the Candolim Time Series (CaTS) transect, off Goa during the Northeast Monsoon (NEM). The most abundant coccolithophore species found in the study region was Gephyrocapsa oceanica. A high abundance of G. oceanica (1800 × 103cells L-1) was observed at the Mangalore transect during the late SWM despite experiencing low pH and can be linked to nitrogen availability. The high abundance of G. oceanica at Mangalore was associated with high dimethylsulphide (DMS). Particulate inorganic carbon (PIC) and scattering coefficient retrieved from satellites also indicated a high abundance of coccolithophores off Mangalore during the late SWM of 2017. Interestingly, G. oceanica showed malformation during the late SWM in low pH waters. Malformation in coccolithophores could have a far-reaching impact on the settling fluxes of organic matter and also on the emissions of climatically important gases such as DMS and CO2, thus influencing atmospheric chemistry. The satellite data for PIC in the EAS indicates a high abundance of coccolithophore in recent years, especially during the warm El Nino years (2015 and 2018). This warrants the need for a better assessment of the fate of coccolithophores in high-CO2 and warmer oceans.


Asunto(s)
Haptophyta , Agua de Mar , Carbono , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Océano Índico , Océanos y Mares , Fitoplancton/química , Agua de Mar/química
4.
Environ Monit Assess ; 194(10): 716, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048260

RESUMEN

The seasonal and spatial distribution of total organic carbon (TOC) is presented for the coastal waters of the eastern Arabian Sea, which experiences seasonal suboxia during the late southwest monsoon (SWM). This study reveals that high TOC was observed off Kochi as compared to Goa and Mangalore transects, and may be attributed to stronger upwelling along the Kerala coast. This is also supported by the excess carbon due to upwelling during the late SWM that varied from 37 µM (Goa), 39 µM (Mangalore), to 51 µM (Kochi). Our seasonal data from 2014 to 2020 at the Goa transect indicates that high TOC is seen during late SWM to fall inter monsoon (FIM) and between the late northeast monsoon (NEM) to the early spring inter monsoon (SIM). The high TOC concentrations and C/N ratios observed during the FIM are a combination of high primary production, the buildup of remnant organic matter from the previous season (due to prevailing low oxygen conditions), accumulation of refractory organic carbon, and release from diatoms (especially Chaetoceros sp.). Inter-annual variations indicate that phytoplankton blooms resulted in higher TOC concentrations, especially during the year 2020. Based on a comparison with an Elnino-Southern Oscillation (ENSO) year (2015), we can infer that the partitioning of carbon may increase from particulate to dissolved phase in future warming scenarios.


Asunto(s)
Carbono , Diatomeas , Monitoreo del Ambiente , Fitoplancton , Estaciones del Año
5.
Environ Sci Pollut Res Int ; 28(47): 66998-67010, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34240306

RESUMEN

Macroalgae supersede corals in the reefs worldwide, converting the coral-dominant systems into algal-dominant ones. Dissolved organic carbon (DOC) released by macroalgae play a prominent role in degrading the coral reefs by stimulating the bacterial growth and metabolism. However, the long-term remineralization of macroalgal DOC and their contribution to the carbon pool are least studied. In this study, we quantified the DOC released by five species of macroalgae that affected live corals through their physical contact and their subsequent remineralization for 100 days by coral mucus bacteria. Also, we analyzed the changes in bacterial community structure after 30 days of exposure to the macroalgal DOC. All the macroalgae released a significant amount of DOC ranging from 2.2 ± 0.17 to 8.1 ± 0.36 µmol C g-1 h-1 (mean ± SD). After 100 days, between 9.2 and 30.9% of the macroalgal DOC remained recalcitrant to bacterial remineralization. There was no apparent change in the dominant bacterial groups exposed to the DOC released by the green macroalgae Caulerpa racemosa and Halimeda sp. In comparison, the Proteobacteria group decreased with a prominent increase in the Firmicutes, Planctomycetes, and Bacteroidetes group in the samples exposed to DOC released by the brown macroalgae Turbinaria ornata, Sargassum tenerrimum, and Padina gymnospora. These inclusive data suggest that the DOC released by different species of macroalgae differed on their lability to microbial mineralization and highlight the comparable patterns in microbial responses to macroalgal exudates across different species.


Asunto(s)
Antozoos , Algas Marinas , Animales , Bacterias , Arrecifes de Coral , Materia Orgánica Disuelta , Planctomicetos
6.
Environ Monit Assess ; 193(1): 27, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389180

RESUMEN

Anthropogenic activities release effluents containing nutrients and pathogenic bacteria that change the characteristics of coastal ecosystems. An important type of marine pollution which has occurred in 3 different states in India during 2019 is sea foam. Sea foam was found on Hole beach, Goa (Lat: 15.404° N, Long: 73.787° E), where nutrients (NO3- = 137 µM and organic nitrogen = 121 µM) from a garbage dumpyard are released directly via streams/gutters to coastal waters. This resulted in a bloom of the diatom Thalassiosira pseudonana, associated with high concentration of total organic carbon and fucoxanthin. Decay of this bloom along with strong agitation due to rocks and wave action resulted in sea foam. We isolated foam-associated bacteria and identified pathogenic bacteria including Enterobacter cancerogenus through 16S rRNA gene sequencing. Such foam-associated pathogenic bacteria, could be antibiotic resistant, and may have adverse effects on human health. This can also hamper the tourism industry of a small state like Goa that relies heavily on tourism.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Enterobacter , Humanos , India , ARN Ribosómico 16S/genética
7.
Mar Pollut Bull ; 163: 111939, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383319

RESUMEN

We report seasonal and temporal variation of total organic carbon (TOC) in the eastern Arabian Sea (AS). In comparison to the deep, TOC in the top 100 m showed spatial variation with higher concentrations towards northern AS during North east monsoon (NEM) and South west monsoon (SWM). A comparison with the US-JGOFS data (1995) shows warmer temperatures, enhanced TOC and low chlorophyll in the recent years. High TOC is associated with Arabian Sea high saline waters (ASHSW), advected from the Arabian Gulf, might have resulted in an enhancement of TOC in the eastern AS. This excess TOC supports a high abundance of bacteria despite the low primary productivity. TOC oxidation accounted for 14.3% and 22.5% of oxygen consumption for waters with potential density between 24.5 and 27.3 kg/m3. This study attains great significance considering the missing links with respect to the role of transport processes in ocean deoxygenation under ongoing warming scenarios.


Asunto(s)
Oxígeno , Agua de Mar , Carbono , Clorofila
8.
Mar Pollut Bull ; 143: 1-5, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31789142

RESUMEN

In this study we report silica rich anthropogenic spherules from the marine environment. We found spherical, dumbbell, teardrop and fused spherules in Zuari estuary (near the Dona paula jetty), south west coast of India. The spherules were composed of SiO2 (69.8%), Na2O (13.2%), CaO (8.8%), MgO (3.8%), and traces of Al2O3, and FeO. Their high Na and Ca contents rules out the possibility of being an impact spherule or microtektite, or anthropogenic spherules coming from fly ash. Their elemental composition suggests that these are glass micro beads that have many applications including production of road and pavement marking materials, such as traffic paints. Considering that the glass micro beads are known to have high concentrations of Pb, As, and Sb that can leach into the marine environment, this study also raises questions regarding the impact of such spherules on marine biota, and highlights the need for further detailed study.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Calcio/análisis , Estuarios , India , Océano Índico , Dióxido de Silicio/análisis , Sodio/análisis
9.
Mar Pollut Bull ; 141: 550-560, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30955767

RESUMEN

The relative importance of organic nitrogen (ON) and inorganic nitrogen (IN) as nitrogen sources for the phytoplankton communities were studied through a seasonal time series of nitrogen species in the eastern Arabian Sea. Seasonal data on nitrogen species showed that ON dominates the system throughout the year and account for >90% of the total nitrogen (TN) during north east monsoon (NEM). The average ON concentration in the study region was 11.5 µM during NEM as compared to 7.2 µM during south west monsoon (SWM). The contribution of picoplankton to the total phytoplankton pool (fpico) increased from 19% during SWM to 36% in NEM. Along with cyanobacteria, the diatoms Thalassionema nitzchoides and Thalassiosira sp. and among the dinoflagellates Pronoctiluca sp. were found to proliferate in ON rich waters. We suggest atmospheric deposition, riverine-input, resuspension of bottom sediment and ground water intrusion as the possible sources of ON in the study region.


Asunto(s)
Nitrógeno/análisis , Fitoplancton/fisiología , Cianobacterias/fisiología , Diatomeas/fisiología , Dinoflagelados/fisiología , Monitoreo del Ambiente , India , Océano Índico , Estaciones del Año
10.
Sci Total Environ ; 660: 1441-1448, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743937

RESUMEN

There is limited knowledge regarding seawater intrusion on Hg distribution in monsoon fed tropical estuarine systems during dry season (February to May). This study examined the influence of resuspension of estuarine sediment and intrusion of Hg bound SPM (HgSPM) (by the tide) from the outside of an estuary in controlling distribution, mobility, and bioavailability of Hg within the estuarine systems during the dry season. This investigation was carried out in the Mandovi estuary, a monsoon fed tropical estuary from the central west coast of India. Total Hg concentrations in the water column showed an increasing trend from upstream to downstream of the estuary. The concentration of Hg in the water column of the estuary was much below the concentration recommended by the EPA for aquatic life ambient water quality. Dissolved Hg (HgDissolved) was found to associate mainly with the higher molecular weight fraction of dissolved organic matter (DOM). A significant portion of the total Hg in the water column was present as HgSPM. The average bio-accumulated Hg concentration in edible oyster was high (collected from the estuary) during the dry season compared to the wet season (June to September). This study reveals that resuspension of Hg associated finer sediment particles and intrusion of HgSPM from the outside of the estuary may increase bioavailability of Hg in the Mandovi estuarine systems during the dry season. It is suggested that Hg bioaccumulation in commercially important biological species from different tropical estuarine system may increase during the dry season. The outcome of this research can be useful for policy making and to take proper decision to reduce and control Hg/toxic metals pollution (if any) in tropical estuarine system.


Asunto(s)
Sedimentos Geológicos/química , Mercurio/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Animales , Estuarios , India , Mercurio/química , Ostreidae/metabolismo , Movimientos del Agua , Contaminantes Químicos del Agua/química
11.
Mar Environ Res ; 70(3-4): 272-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20547419

RESUMEN

Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean.


Asunto(s)
Monitoreo del Ambiente , Estaciones del Año , Agua de Mar/química , Ecosistema , Océano Índico , Nitratos/análisis , Nitritos/análisis , Oxígeno/análisis , Fosfatos/análisis , Salinidad , Silicatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...