Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(8): 4241-4255, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29471365

RESUMEN

Integrator (INT) is a transcriptional regulatory complex associated with RNA polymerase II that is required for the 3'-end processing of both UsnRNAs and enhancer RNAs. Integrator subunits 9 (INTS9) and INTS11 constitute the catalytic core of INT and are paralogues of the cleavage and polyadenylation specificity factors CPSF100 and CPSF73. While CPSF73/100 are known to associate with a third protein called Symplekin, there is no paralog of Symplekin within INT raising the question of how INTS9/11 associate with the other INT subunits. Here, we have identified that INTS4 is a specific and conserved interaction partner of INTS9/11 that does not interact with either subunit individually. Although INTS4 has no significant homology with Symplekin, it possesses N-terminal HEAT repeats similar to Symplekin but also contains a ß-sheet rich C-terminal region, both of which are important to bind INTS9/11. We assess three functions of INT including UsnRNA 3'-end processing, maintenance of Cajal body structural integrity, and formation of histone locus bodies to conclude that INTS4/9/11 are the most critical of the INT subunits for UsnRNA biogenesis. Altogether, these results indicate that INTS4/9/11 compose a heterotrimeric complex that likely represents the Integrator 'cleavage module' responsible for its endonucleolytic activity.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/química , ARN Nuclear Pequeño/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
Nat Commun ; 7: 10966, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26997247

RESUMEN

The mechanisms underlying nuclear body (NB) formation and their contribution to genome function are unknown. Here we examined the non-random positioning of Cajal bodies (CBs), major NBs involved in spliceosomal snRNP assembly and their role in genome organization. CBs are predominantly located at the periphery of chromosome territories at a multi-chromosome interface. Genome-wide chromosome conformation capture analysis (4C-seq) using CB-interacting loci revealed that CB-associated regions are enriched with highly expressed histone genes and U small nuclear or nucleolar RNA (sn/snoRNA) loci that form intra- and inter-chromosomal clusters. In particular, we observed a number of CB-dependent gene-positioning events on chromosome 1. RNAi-mediated disassembly of CBs disrupts the CB-targeting gene clusters and suppresses the expression of U sn/snoRNA and histone genes. This loss of spliceosomal snRNP production results in increased splicing noise, even in CB-distal regions. Therefore, we conclude that CBs contribute to genome organization with global effects on gene expression and RNA splicing fidelity.


Asunto(s)
Cuerpos Enrollados/genética , Genoma Humano , Conformación de Ácido Nucleico , Cromosomas Humanos/genética , Epigénesis Genética , Sitios Genéticos , Células HeLa , Histonas/genética , Humanos , Hibridación Fluorescente in Situ , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nucleolar Pequeño/genética , Reproducibilidad de los Resultados , Eliminación de Secuencia , Empalmosomas/metabolismo , Transcripción Genética
3.
Blood ; 121(5): 791-800, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23104922

RESUMEN

UNLABELLED: The establishment of a latent reservoir by human tumor viruses is a vital step in initiating cellular transformation and represents a major shortcoming to current therapeutic strategies and the ability to eradicate virus-infected cells. Human T-cell leukemia virus type 1 (HTLV-1) establishes a lifelong infection and is linked to adult T-cell leukemia lymphoma (ATLL). Here, we demonstrate that HTLV-1 p30 recruits the cellular proteasome activator PA28γ onto the viral tax/rex mRNA to prevent its nuclear export and suppress virus replication. Interaction of p30 with a PA28γ retaining fully functional proteasome activity is required for p30's ability to repress HTLV-1. Consistently, HTLV-1 molecular clones replicate better and produce more virus particles in PA28γ-deficient cells. These results define a unique and novel role for the cellular factor PA28γ in the control of nuclear RNA trafficking and HTLV-1­induced latency. Importantly, knockdown of PA28γ expression in ATLL cells latently infected with HTLV-1 reactivates expression of viral tax/rex RNA and the Tax protein. Because Tax is the most immunogenic viral antigen and triggers strong CTL responses, our results suggest that PA28γ-targeted therapy may reactivate virus expression from latently infected cells and allow their eradication from the host. KEY POINTS: PA28γ acts as a co-repressor of HTLV-1 p30 to suppress virus replication and is required for the maintenance of viral latency. HTLV-1 has evolved a unique function mediated by its posttranscriptional repressor p30, which is not found in HTLV-2.


Asunto(s)
Autoantígenos/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Latencia del Virus/fisiología , Replicación Viral/fisiología , Animales , Autoantígenos/genética , Transporte Biológico Activo/genética , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Productos del Gen rex/genética , Productos del Gen rex/metabolismo , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Humanos , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , ARN Viral/genética , ARN Viral/metabolismo
4.
Mol Biol Cell ; 23(18): 3694-706, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22855529

RESUMEN

The mammalian cell nucleus is compartmentalized into nonmembranous subnuclear domains that regulate key nuclear functions. Nuclear speckles are subnuclear domains that contain pre-mRNA processing factors and noncoding RNAs. Many of the nuclear speckle constituents work in concert to coordinate multiple steps of gene expression, including transcription, pre-mRNA processing and mRNA transport. The mechanism that regulates the formation and maintenance of nuclear speckles in the interphase nucleus is poorly understood. In the present study, we provide evidence for the involvement of nuclear speckle resident proteins and RNA components in the organization of nuclear speckles. SR-family splicing factors and their binding partner, long noncoding metastasis-associated lung adenocarcinoma transcript 1 RNA, can nucleate the assembly of nuclear speckles in the interphase nucleus. Depletion of SRSF1 in human cells compromises the association of splicing factors to nuclear speckles and influences the levels and activity of other SR proteins. Furthermore, on a stably integrated reporter gene locus, we demonstrate the role of SRSF1 in RNA polymerase II-mediated transcription. Our results suggest that SR proteins mediate the assembly of nuclear speckles and regulate gene expression by influencing both transcriptional and posttranscriptional activities within the cell nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Células Cultivadas , Células HeLa , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Factores de Empalme Serina-Arginina , Transcripción Genética
5.
Nat Commun ; 3: 866, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22643893

RESUMEN

Despite past progress in understanding mechanisms of cellular mechanotransduction, it is unclear whether a local surface force can directly alter nuclear functions without intermediate biochemical cascades. Here we show that a local dynamic force via integrins results in direct displacements of coilin and SMN proteins in Cajal bodies and direct dissociation of coilin-SMN associated complexes. Spontaneous movements of coilin increase more than those of SMN in the same Cajal body after dynamic force application. Fluorescence resonance energy transfer changes of coilin-SMN depend on force magnitude, an intact F-actin, cytoskeletal tension, Lamin A/C, or substrate rigidity. Other protein pairs in Cajal bodies exhibit different magnitudes of fluorescence resonance energy transfer. Dynamic cyclic force induces tiny phase lags between various protein pairs in Cajal bodies, suggesting viscoelastic interactions between them. These findings demonstrate that dynamic force-induced direct structural changes of protein complexes in Cajal bodies may represent a unique mechanism of mechanotransduction that impacts on nuclear functions involved in gene expression.


Asunto(s)
Cuerpos Enrollados/metabolismo , Lamina Tipo A/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Lamina Tipo A/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plectina/genética , Plectina/metabolismo
6.
Nat Cell Biol ; 13(2): 167-73, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240286

RESUMEN

The biogenesis of the many functional compartments contained in the mammalian cell nucleus is poorly understood. More specifically, little is known regarding the initial nucleation step required for nuclear body formation. Here we show that RNA can function as a structural element and a nucleator of nuclear bodies. We find that several types of coding and noncoding RNAs are sufficient to de novo assemble, and are physiologically enriched in, histone locus bodies (with associated Cajal bodies), nuclear speckles, paraspeckles and nuclear stress bodies. Formation of nuclear bodies occurs through recruitment and accumulation of proteins resident in the nuclear bodies by nucleating RNA. These results demonstrate that transcription is a driving force in nuclear body formation and RNA transcripts can function as a scaffold in the formation of major nuclear bodies. Together, these data suggest that RNA-primed biogenesis of nuclear bodies is a general principle of nuclear organization.


Asunto(s)
Núcleo Celular/ultraestructura , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , ARN/metabolismo , Animales , Cuerpos Enrollados/genética , Cuerpos Enrollados/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Proteínas Nucleares/metabolismo , ARN/química , ARN/genética
7.
Cell Cycle ; 5(20): 2295-300, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17035736

RESUMEN

Wnt signaling pathways are some of the most intensely studies in all of biology. Recently, a number of classical heterotrimeric G protein coupled receptors (GPCRs) have been shown to activate the canonical Wnt pathway, culminating in the stabilization of beta-catenin and induction of transcription of genes regulated by the Tcf/Lef family of transactivators. However, mechanisms by which these GPCRs accomplish this differ in key ways, and in some circumstances, the phenotypes produced are novel. Herein, we will examine mechanisms by which classical GPCRs interact with the canonical Wnt pathway, culminating in its activation, and describe the consequences of this activation, focusing on the heart. In the heart, the contractile cells, or cardiomyocytes, are terminally differentiated and virtually exclusively grow by increasing cell size (hypertrophy) rather than cell number, and we will describe how GPCR-mediated activation of the canonical pathway can drive this process.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , beta Catenina/metabolismo , Animales , Humanos , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...