Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
2.
J Gastrointest Surg ; 28(7): 1089-1094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703987

RESUMEN

PURPOSE: The association between the age-adjusted Charlson Comorbidity Index (ACCI) and sarcopenia in patients with gastric cancer (GC) remains ambiguous. This study aimed to investigate the association between the ACCI and sarcopenia and the prognostic value in patients with GC after radical resection. In addition, this study aimed to develop a novel prognostic scoring system based on these factors. METHODS: Univariate and multivariate Cox regression analyses were used to determine prognostic factors in patients undergoing radical GC resection. Based on the ACCI and sarcopenia, a new prognostic score (age-adjusted Charlson Comorbidity Index and Sarcopenia [ACCIS]) was established, and its prognostic value was assessed. RESULTS: This study included 1068 patients with GC. Multivariate analysis revealed that the ACCI and sarcopenia were independent risk factors during the prognosis of GC (P = 0.001 and P < 0.001, respectively). A higher ACCI score independently predicted sarcopenia (P = 0.014). A high ACCIS score was associated with a greater American Society of Anesthesiologists score, higher pathologic TNM (pTNM) stage, and larger tumor size (all P < 0.05). Multivariate analysis demonstrated that the ACCIS independently predicted the prognosis for patients with GC (P < 0.001). By incorporating the ACCIS score into a prognostic model with sex, pTNM stage, tumor size, and tumor differentiation, we constructed a nomogram to predict the prognosis accurately (concordance index of 0.741). CONCLUSION: The ACCI score and sarcopenia are significantly correlated in patients with GC. The integration of the ACCI score and sarcopenia markedly enhances the accuracy of prognostic predictions in patients with GC.


Asunto(s)
Gastrectomía , Sarcopenia , Neoplasias Gástricas , Humanos , Sarcopenia/complicaciones , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Gastrectomía/efectos adversos , Estadificación de Neoplasias , Estudios Retrospectivos , Factores de Riesgo , Factores de Edad , Comorbilidad , Carga Tumoral , Adulto , Anciano de 80 o más Años , Modelos de Riesgos Proporcionales , Análisis Multivariante
3.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243850

RESUMEN

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Asunto(s)
Lagartos , Melaninas , Animales , Melaninas/genética , Lagartos/genética , Pez Cebra , Regulación de la Temperatura Corporal/genética , Pigmentación de la Piel/genética , Color
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...