Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Poult Sci ; 103(7): 103866, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38833957

RESUMEN

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.

2.
Plant Biotechnol J ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768314

RESUMEN

Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.

3.
Plant Cell Rep ; 43(6): 153, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806727

RESUMEN

KEY MESSAGE: MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Manihot , Melatonina , Fotosíntesis , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Melatonina/metabolismo , Manihot/genética , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Clorofila/metabolismo , Oscuridad , Peróxido de Hidrógeno/metabolismo
4.
J Foot Ankle Res ; 17(2): e12027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38812103

RESUMEN

PURPOSE: Abnormal lower limb movement patterns have been observed during walking in individuals with limited ankle dorsiflexion. The purpose of this study was to investigate the relationships of peak ankle dorsiflexion angle during the stance phase of walking with the lower extremity biomechanics at the corresponding moment and to determine a cutoff value of functional limited ankle dorsiflexion during walking. METHODS: Kinematic and kinetic data of 70 healthy participants were measured during walking. Spearman's correlation coefficients were calculated to establish the association between peak ankle dorsiflexion and angle and moment of ankle, knee, and hip, ground reaction force, and pelvic movement at peak ankle dorsiflexion. All variables significantly related to peak ankle dorsiflexion were extracted as a common factor by factor analysis. Maximally selected Wilcoxon statistic was used to perform a cutoff value analysis. RESULTS: Peak ankle dorsiflexion positively correlated with ankle plantar flexion moment (r = 0.432; p = 0.001), ankle external rotation moment (r = 0.251; p = 0.036), hip extension angle (r = 0.281; p = 0.018), hip flexion moment (r = 0.341; p = 0.004), pelvic ipsilateral rotation angle (r = 0.284; p = 0.017), and medial, anterior, and vertical ground reaction force (r = 0.324; p = 0.006, r = 0.543; p = 0.001, r = 0.322; p = 0.007), negatively correlated with knee external rotation angle (r = -0.394; p = 0.001) and hip adduction angle (r = -0.256; p = 0.032). The cutoff baseline value for all 70 participants was 9.03°. CONCLUSIONS: There is a correlation between the peak ankle dorsiflexion angle and the lower extremity biomechanics during walking. If the peak ankle dorsiflexion angle is less than 9.03°, the lower limb movement pattern will change significantly.


Asunto(s)
Articulación del Tobillo , Extremidad Inferior , Rango del Movimiento Articular , Caminata , Humanos , Fenómenos Biomecánicos/fisiología , Masculino , Femenino , Articulación del Tobillo/fisiología , Caminata/fisiología , Rango del Movimiento Articular/fisiología , Adulto , Extremidad Inferior/fisiología , Adulto Joven , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Tobillo/fisiología
5.
Mar Pollut Bull ; 203: 116485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754319

RESUMEN

In this study, the accumulation rate of plastic litter was investigated by sampling quadrats placed on the North Island of Qilianyu, and the composition was analyzed and identified to determine its source. The results showed that the annual average accumulation rate of plastic litter on North Island was 0.64 ± 0.32 pieces·m-2·month-1, with a mass accumulation rate of 11.30 ± 7.73 g·m-2·month-1. The accumulation rate of plastic litter was mainly influenced by wind speed and direction, with higher accumulation rates occurring during the southwest monsoon season and tropical cyclones. ATR-FTIR analysis indicated that polyethylene (44 %) and polypropylene (41 %) were the most abundant types of polymers. This study reveals the current status of plastic litter pollution in green turtle nesting grounds on North Island in Qilianyu, which can be used as a reference for management strategies that mitigate plastic litter pollution.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Tortugas , Animales , Plásticos/análisis , China , Contaminantes Químicos del Agua/análisis , Islas , Comportamiento de Nidificación
6.
Phys Life Rev ; 50: 13-26, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38821019

RESUMEN

The gut immune system embodies a complex interplay between the gut mucosal barrier, the host's immune cells, and gut microbiota. These components exist within a dynamic environment characterized by a variety of physical cues, e.g., compression, tension, shear stress, stiffness, and viscoelasticity. The physical cues can be modified under specific pathological conditions. Given their dynamic nature, comprehending the specific effects of these physical cues on the gut immune system is critical for pathological and therapeutic studies of intestinal immune-related diseases. This review aims to discuss how physical cues influence gut immunology by affecting the gut mucosal barrier, host immune cells, and gut microbiota, defining this concept as gut mechanoimmunology. This review seeks to highlight that an enhanced understanding of gut mechanoimmunology carries therapeutic implications, not only for intestinal diseases but also for extraintestinal diseases.

7.
Animals (Basel) ; 14(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612327

RESUMEN

Comprehensively understanding the spatial ecology and habitat preferences of endangered species is essential for population restoration and conservation. We investigated the home range and movement of the endangered Amur soft-shell turtle (Pelodiscus maackii) in the Ussuri River, Heilongjiang Province, Northeastern China. The study involved tracking 19 Amur soft-shell turtles from late June to mid-October, 2022, resulting in complete and partial home range size data for eight subadults and two adults, respectively. The primary analysis focused on eight subadults, and the models that best described daily movement were identified. We also explored the potential factors influencing home range size. The mean movement rate ranged from 39.18 ± 20.04 m/day to 72.45 ± 29.36 m/day and was positively correlated with the linear home range and water temperature. The most enlightening estimation of home range was derived from a 95% kernel density estimate, utilizing likelihood cross-validation smoothing while adhering to constraints delineated by the river boundaries. The average size of the home range was determined to be 1.02 hectares and displayed no correlation with body size. Subadults tended to establish well-defined home ranges over time, whereas defining home ranges for adults proved challenging. This research addresses a gap regarding the ecology of the Amur soft-shell turtle and provides a foundation for future conservation plans.

8.
Plant Biotechnol J ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600705

RESUMEN

The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.

9.
J Exp Bot ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623889

RESUMEN

Cassava is one of the most important tuber crops that is used for food, starch and bio-energy. However, cassava is susceptible to a number of diseases, especially cassava bacterial blight (CBB). Nitric oxide (NO) and hydrogen peroxide (H2O2) regulate plant growth and development, as well as stress responses. However, no direct relationships between the enzymes involved in the metabolic enzymes that produce and process these key signaling molecules has been demonstrated. Here, we provide evidence for the interaction between the nitrate reductase 2 (MeNR2) and catalase 1 (MeCAT1) proteins in vitro and in vivo, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, respectively. MeNR2 is a positive regulator and MeCAT1 is a negative regulator of CBB resistance. MeNR2 was localized in the nucleus, cell membrane and peroxisome, while MeCAT1 was localized in the peroxisomes. The interactions between MeNR2 and MeCAT1 also had effects of their respective enzyme activities. Taken together, the data presented here suggested that there is coordination between H2O2 and NO signaling in cassava disease resistance, through the interactions between MeCAT1 and MeNR2.

10.
New Phytol ; 242(6): 2734-2745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581188

RESUMEN

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Manihot , Enfermedades de las Plantas , Proteínas de Plantas , Fosforilación , Proteínas HSP90 de Choque Térmico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Manihot/microbiología , Manihot/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Interacciones Huésped-Patógeno , Unión Proteica , Regulación de la Expresión Génica de las Plantas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38428623

RESUMEN

The elevated salinity in freshwater causes a serious threat to the survival and reproduction of freshwater organisms. The effect of salinity on embryonic development of freshwater turtles is little known. In this study, we investigated the embryonic morphology and underlining mechanism of red-eared slider (Trachemys scripta elegans) in different salinities incubated environment (2.5 ppt and 5 ppt). Results showed that salinity caused various forms of malformed embryos, including brain hypoplasia, eye defects, skeletal dysplasia, deformities of carapace, plastron, limb in the embryo. Severely, salinity could lead to embryos decease. Transcriptome analysis showed that differentially expressed genes induced by salinity primarily enriched in development pathways, metabolism pathways, disease pathways as well as cell processes through KEGG enrichment analysis. In addition, in early and middle embryonic developmental stages, the mRNA expression of apoptotic genes (p38 and bax) significantly increased, whereas anti-apoptotic gene bcl-2 decreased in salinities incubated environment. These findings demonstrated that salinity inhibited the process of embryonic development and damaged organogenesis of turtles through promoting apoptotic pathways.


Asunto(s)
Tortugas , Animales , Tortugas/genética , Tortugas/metabolismo , Estrés Salino , Perfilación de la Expresión Génica , Desarrollo Embrionario , Organogénesis
12.
Artículo en Inglés | MEDLINE | ID: mdl-38437998

RESUMEN

Chinese soft-shelled turtle (Pelodiscus sinensis) hibernates without eating and drinking when the ambient temperature is very low. To better understand the characteristics of energy utilization during hibernation, the turtles in the physiological phases of summer active (SA), Pre-Hibernation (Pre-H), Mid-Hibernation (Mid-H) and early arousal (EA) were sampled. The results showed that the levels of serum triglyceride and hepatic lipid droplet were markedly increased in Pre-H and decreased in Mid-H compared with that in SA, indicating that P. sinensis experiences lipid accumulation in Pre-H and lipid is the predominant energy reserve during hibernation. The mRNA expression levels of genes (FABP and CPT-2) involved in lipolysis and lipid oxidation were up-regulated in Mid-H, while the genes related to lipid synthesis (FAS, ACSL-1, ACC, elovl5, and SCD1) were inhibited in Mid-H. Meanwhile, the mRNA expression levels of endoplasmic reticulum stress marker gene Bip and key genes (ATF4, ATF6, and IRE1α) involving the unfolded protein response were significantly increased in Mid-H and EA. Also, the expression levels of genes (ASK1, JNK1, and Bax) associated with cell apoptosis increased in Mid-H and EA, however, the expression of Bcl2 was inhibited in Mid-H. Therefore, hibernation can cause endoplasmic reticulum stress and apoptosis. The findings will provide a theoretical framework for an animal's cold adaptation and offer insights into preventing and managing metabolic syndrome.


Asunto(s)
Tortugas , Animales , Tortugas/metabolismo , Metabolismo de los Lípidos , Estaciones del Año , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Lípidos
13.
Toxics ; 12(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393204

RESUMEN

The threat of microplastics to marine animals and habitats is increasing, which may affect sea turtle nesting grounds. The Qilianyu Islands are the largest remaining green turtle (Chelonia mydas) nesting grounds in China. Despite being far from the mainland, microplastic pollution cannot be ignored. In this study, the level of microplastic pollution in surface sediments from three different zones, namely, the bottom, intertidal, and supratidal zone, was investigated on North Island, Qilianyu Islands. The results showed that the abundance of microplastics in the supratidal zone was significantly higher than that in the bottom zone and intertidal zone (r = 3.65, p = 0.011), with the highest average abundance of microplastics located on the southwest coast of North Island. In the bottom zone, only plastic blocks (88%) and fibers (12%) were found. The main types of microplastics in the intertidal and supratidal zones were plastic blocks (48%) and foam (42%), with polyethylene (PE) (40%) and polystyrene (PS) (34%) being the predominant components. These types and components of microplastics differed from those in the surrounding seawater, but corresponding types and components were found in the plastic debris on the beach. Meanwhile, it was also observed that there were multiple instances of fragmented plastic on the beach. Thus, we suggest that the microplastics on the beach in North Island were mainly derived from the fragmentation of microplastic debris, indicating secondary microplastics. It is recommended to further strengthen the regular cleaning of plastic debris on the beach, especially the removal of small plastic debris, in order to reduce the pollution from secondary microplastics generated by the fragmentation of beach plastic debris and to better protect China's most important sea turtle nesting site in the South China Sea.

14.
J Transl Med ; 22(1): 202, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403655

RESUMEN

BACKGROUND: The relationship between the gut mycobiome and end-stage renal disease (ESRD) remains largely unexplored. METHODS: In this study, we compared the gut fungal populations of 223 ESRD patients and 69 healthy controls (HCs) based on shotgun metagenomic sequencing data, and analyzed their associations with host serum and fecal metabolites. RESULTS: Our findings revealed that ESRD patients had a higher diversity in the gut mycobiome compared to HCs. Dysbiosis of the gut mycobiome in ESRD patients was characterized by a decrease of Saccharomyces cerevisiae and an increase in various opportunistic pathogens, such as Aspergillus fumigatus, Cladophialophora immunda, Exophiala spinifera, Hortaea werneckii, Trichophyton rubrum, and others. Through multi-omics analysis, we observed a substantial contribution of the gut mycobiome to host serum and fecal metabolomes. The opportunistic pathogens enriched in ESRD patients were frequently and positively correlated with the levels of creatinine, homocysteine, and phenylacetylglycine in the serum. The populations of Saccharomyces, including the HC-enriched Saccharomyces cerevisiae, were frequently and negatively correlated with the levels of various toxic metabolites in the feces. CONCLUSIONS: Our results provided a comprehensive understanding of the associations between the gut mycobiome and the development of ESRD, which had important implications for guiding future therapeutic studies in this field.


Asunto(s)
Microbioma Gastrointestinal , Fallo Renal Crónico , Micobioma , Humanos , Saccharomyces cerevisiae , Heces/microbiología , Metaboloma
15.
Aquat Toxicol ; 268: 106841, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320419

RESUMEN

Butyl paraben (BuP) is widely used in cosmetics, drugs, and food preservation. Recently it is an identified new pollutant that affects various aspects of reproduction, lipid metabolism, and nervous system. Behavioral activity serves as a pre-warning biomarker for predicting water quality. So, in this study, the changes in some behaviors and its neurotransmitters and cell apoptosis in the brain of Chinese striped-necked turtles (Mauremys sinensis) were studied when the turtles were exposed to BuP concentrations of 0, 5, 50, 500, and 5000 µg/L for 21 weeks. The results showed that, the basking time and altering scores to external stimuli in the groups of 50, 500, and 5000 µg/L were significantly reduced, while the time for body-righting was significantly increased, compared with the control (0 µg/L), indicating that the turtles exhibited depression and inactive behavior. The analysis of neurotransmitter in the brain showed that 5-hydroxytryptamine (5-HT) contents in the groups of 500 and 5000 µg/L were significantly higher than the other groups, which was due to an increase in the mRNA relative expression levels of the 5-HT receptor gene (5-HTR), neurotransmitter transporter genes (Drd4, Slc6a4), and neurotransmitter synthase tryptophan hydroxylase (TPH). Furthermore, GABA transaminase (GABA-T) activity increased in the 500 and 5000 µg/L groups, and tyrosine hydroxylase (TH) activity increased dramatically in the 5000 µg/L group. However, acetyl-CoA (AChE) activity was significantly reduced in these four BuP exposure groups. These changes could be attributed to decreased movement velocity and increased inactivity. Meanwhile, the mRNA expression level of BAX, Bcl-2, caspase-9 and TUNEL assay indicated the occurrence of cell apoptosis in the brains of the higher BuP exposed groups, which may play an important role in neuronal death inducing behavior change. In summary, these findings offer fundamental insights into turtle ecotoxicology and serve as a foundation for a comprehensive assessment of the ecological and health risks associated with BuP.


Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Tortugas/genética , Tortugas/metabolismo , Parabenos/metabolismo , Contaminantes Químicos del Agua/toxicidad , ARN Mensajero/metabolismo , Neurotransmisores/metabolismo , China
18.
Plant Physiol ; 194(4): 2724-2738, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38198213

RESUMEN

Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.


Asunto(s)
Manihot , Termotolerancia , Antioxidantes , Manihot/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Monoéster Fosfórico Hidrolasas
19.
Artículo en Inglés | MEDLINE | ID: mdl-38296217

RESUMEN

As one of main pollutants, ammonia could cause adverse effects to aquatic animals. To explore the toxic effects of ammonia on Chinese striped-necked turtles (Mauremys sinensis) and invasive species red-eared slider (Trachemys scripta elegans), we compared the activities of antioxidant enzymes, the mRNA levels of genes involved in immune status, endoplasmic reticulum stress and apoptosis between T. s. elegans and M. sinensis under ammonia exposure for 30 days. The results showed that ammonia obviously increased the activities of SOD, CAT, GPX and T-AOC in both T. s. elegans and M. sinensis, especially CAT and GPX in T. s. elegans were higher than that in M. sinensis. The expression levels of JAK, RELA and Mcl-1 in T. s. elegans obviously increased, while IL-6 mRNA levels significantly increased in M. sinensis. In addition, Bip and IRE1 levels in M. sinensis showed a marked increase, and were significantly higher than that in T. s. elegans. Bcl-2 and Bcl-xL transcriptional levels in T. s. elegans showed an increase, especially Bcl-xL were significantly higher than that in M. sinensis. These results indicated that T. s. elegans exhibited more stronger antioxidant defense and immune function than M. sinensis under ammonia exposure. M. sinensis was more likely to occur endoplasmic reticulum stress and inflammation in ammonia environment. This research reveals the physiological response of turtles to ammonia, helps to understand adverse effects of environmental pressure on aquatic turtles, and further explains the tolerance of invasive species T. s. elegans to environmental pollution.


Asunto(s)
Tortugas , Animales , Amoníaco/toxicidad , Especies Introducidas , Antioxidantes , ARN Mensajero
20.
Plant Physiol ; 194(2): 1218-1232, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874769

RESUMEN

Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.


Asunto(s)
Manihot , Melatonina , Virus del Mosaico , Potexvirus , Resistencia a la Enfermedad/genética , Manihot/genética , Manihot/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Potexvirus/genética , Melatonina/metabolismo , Enfermedades de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA