Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718119

RESUMEN

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Microambiente Tumoral , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Inmunoterapia/métodos , Animales , Ratones , Humanos , Catálisis , Línea Celular Tumoral , Nanoestructuras/química , Materiales Biomiméticos/química , Administración Oral , Titanio/química , Biomimética/métodos , Ácido Láctico/química , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Compuestos de Bario
2.
Biotechnol Adv ; 73: 108374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729229

RESUMEN

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.


Asunto(s)
Carmin de Índigo , Carmin de Índigo/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Colorantes/química , Colorantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Adv Mater ; : e2312008, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38501999

RESUMEN

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here it is shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3 , sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

4.
Adv Sci (Weinh) ; : e2310211, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460166

RESUMEN

The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood-brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2 O2 into O2 , not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.

5.
Microbiol Res ; 282: 127629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330819

RESUMEN

Apart from its role in translation, codon bias is also an important mechanism to regulate mRNA levels. The traditional frequency-based codon optimization strategy is rather efficient in organisms such as N. crassa, but much less in yeast P. pastoris which is a popular host for heterologous protein expression. This is because that unlike N. crassa, the preferred codons of P. pastoris are actually AU-rich and hence codon optimization for extremely low GC content comes with issues of pre-mature transcriptional termination or low RNA stability in spite of translational advantages. To overcome this bottleneck, we focused on three reporter genes in P. pastoris first and confirmed the great advantage of GC-prone codon optimization on mRNA levels. Then we altered the codon bias profile of P. pastoris by introducing additional rare tRNA gene copies. Prior to that we constructed IPTG-regulated tRNA species to enable chassis cells to switch between different codon bias status. As demonstrated again with reporter genes, protein yield of luc and 0788 was successfully increased by 4-5 folds in chassis cells. In summary, here we provide an alternative codon optimization strategy for genes with unsatisfactory performance under traditional codon frequency-based optimization.


Asunto(s)
Uso de Codones , Pichia , Pichia/genética , Codón/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/genética
6.
Clin Transl Oncol ; 26(2): 496-514, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37407805

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. METHODS: Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). RESULTS: Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes. CONCLUSION: We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Ribosomas , Proteínas Ribosómicas/genética , Biomarcadores de Tumor/genética , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC , Proteínas de Transporte de Sodio-Glucosa
7.
Adv Mater ; 36(3): e2308726, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37842855

RESUMEN

Piezoelectric, pyroelectric, and ferroelectric materials are considered unique biomedical materials due to their dielectric crystals and asymmetric centers that allow them to directly convert various primary forms of energy in the environment, such as sunlight, mechanical energy, and thermal energy, into secondary energy, such as electricity and chemical energy. These materials possess exceptional energy conversion ability and excellent catalytic properties, which have led to their widespread usage within biomedical fields. Numerous biomedical applications have demonstrated great potential with these materials, including disease treatment, biosensors, and tissue engineering. For example, piezoelectric materials are used to stimulate cell growth in bone regeneration, while pyroelectric materials are applied in skin cancer detection and imaging. Ferroelectric materials have even found use in neural implants that record and stimulate electrical activity in the brain. This paper reviews the relationship between ferroelectric, piezoelectric, and pyroelectric effects and the fundamental principles of different catalytic reactions. It also highlights the preparation methods of these three materials and the significant progress made in their biomedical applications. The review concludes by presenting key challenges and future prospects for efficient catalysts based on piezoelectric, pyroelectric, and ferroelectric nanomaterials for biomedical applications.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Materiales Biocompatibles/farmacología , Encéfalo , Catálisis , Proliferación Celular
8.
BMC Complement Med Ther ; 23(1): 418, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985995

RESUMEN

BACKGROUND: Physical exercise training is the central component of pulmonary rehabilitation. This study aimed to further investigate the rehabilitative effects of pulmonary-based Qigong exercise (PQE) in stable patients with chronic obstructive pulmonary disease (COPD). METHODS: In this randomized, assessor-blinded clinical trial, 44 participants with stable COPD were randomly assigned to 2 groups in a 1:1 ratio. Participants in the control group received usual care for 3 months. Participants in the intervention group received usual care combined with PQE (60 min each time, 2 times per day, 7 days per week, for 3 months). The outcome included exercise capacity, lung function test, skeletal muscle strength, dyspnea, and quality of life were measured before and after intervention. RESULTS: A total of 37 participants completed the trial. Compared to the control group, after 3 months of PQE, the mean change in exercise capacity, skeletal muscle strength, and quality of life were statistically significant (P < 0.05, for each), but no significant differences were observed in lung function (except for the forced expiratory volume in one second) and dyspnea (P > 0.05, for each). CONCLUSION: The findings of study suggest that the proposed program of 3 months of PQE intervention has significant improvement in exercise capacity, skeletal muscle strength, and quality of life of COPD-stable patients. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (Trial ID: ChiCTR-1800017405 on 28 July 2018; available at https://www.chictr.org.cn/showproj.html?proj=28343 ).


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Qigong , Humanos , Calidad de Vida , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/terapia , Ejercicio Físico , Disnea/rehabilitación
9.
Nanoscale ; 15(48): 19407-19422, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37965689

RESUMEN

Treating cancer remains one of the most formidable challenges in modern medicine, with traditional treatment options often being limited by poor therapeutic outcomes and unacceptable side effects. Nanocatalytic therapy activates tumor-localized catalytic reactions in situ via nontoxic or minimally toxic nanocatalysts responding to unique cues from the tumor microenvironment or external stimuli. In particular, sonocatalytic cancer therapy is a promising approach that has emerged as a potential solution to this problem through the combination of ultrasound waves and catalytic materials to selectively target and destroy cancer cells. Compared to light, ultrasound exhibits higher spatial precision, lower energy attenuation, and superior tissue penetrability, furnishing more energy to catalysts. Multidimensional modulation of nanocatalyst structures and properties is pivotal to maximizing catalytic efficiency given constraints in external stimulative energy as well as substrate types and levels. In this review, we discuss the various theories and mechanisms underlying sonocatalytic cancer therapy, as well as advanced catalysts that have been developed for this application. Additionally, we explore the design of sonocatalytic cancer therapy systems, including the use of heterojunction catalysts and the optimal conditions for achieving maximum therapeutic effects. Finally, we highlight the potential benefits of sonocatalytic cancer therapy over traditional cancer treatments, including its noninvasive nature and lower toxicity.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Ondas Ultrasónicas , Microambiente Tumoral
10.
Contemp Clin Trials Commun ; 36: 101214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37842323

RESUMEN

Introduction: Negative symptoms and cognitive impairment are common residual symptoms of schizophrenia that seriously affect the quality of life and social function of patients. The intervention of residual symptoms is an important part of schizophrenia rehabilitation. Traditional Chinese exercise has been applied as a supplementary rehabilitation method for schizophrenia. However, research on its use and pertinence in the rehabilitation of residual symptoms remains lacking. In this study, we will verify the intervention effect of a new method, namely, shen-based qigong exercise, on the residual symptoms of schizophrenia, in the hopes of finding a safe and effective rehabilitation method for the residual symptoms of schizophrenia. Methods: This is a single-centre randomised controlled trial. A total of 60 schizophrenics who meet the criteria will be randomly divided into the control and intervention groups in accordance with the ratio of 1:1. Conventional drug treatment will remain unchanged in both groups. In this case, the control group will be given daily rehabilitation, whereas the intervention group will be given daily rehabilitation and shen-based qigong exercise intervention. The intervention period will be 12 weeks. The primary outcome will be negative symptoms assessed by the Scale for the Assessment of Negative Symptoms. The secondary outcome will be the global cognitive function assessed by the Repeatable Battery for the Assessment of Neuropsychological Status and event-related potential P300. Other outcomes will include specific cognitive domain (i.e. working memory), quality of life and social function. The results will be measured within 1 week before and after the intervention. Discussion: The results of this study will likely help find an economical and convenient rehabilitation method for the residual symptoms of schizophrenia and, at the same time, may promote the popularisation and application of traditional Chinese exercises and traditional Chinese medicine theories in the treatment of mental diseases. Trial registration: ClinicalTrials.gov registry number: NCT05310955.

11.
Cureus ; 15(9): e45793, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37872914

RESUMEN

Hypokalemia may be present in some patients with Sjogren's syndrome. When a patient with Sjogren's syndrome presents with hypokalemia, we would first consider it to be a result of the renal involvement of Sjogren's syndrome. However, in this case report, we present a young woman with Sjogren's syndrome who presented with hypokalemia that was not caused by renal tubular acidosis but by the presence of a coexisting aldosterone-producing adenoma. Cases of Sjogren's syndrome coexisting with aldosterone-producing adenoma are extremely rare. This finding underscores the need for more careful differential diagnosis in patients with Sjogren's syndrome who also have hypokalemia.

12.
Acta Biomater ; 168: 440-457, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479159

RESUMEN

Cosmetics for perming hair are commonly used but have negative impacts on hair fibers. Repairing damaged hair with conditioners, hair oil, and hair masks can provide relief but cannot prevent injuries. Recent research has shown that proteins and amino acids can remodel hair's disulfide bonds. However, the permeation ability of proteins is limited, and amino acids may disrupt the secondary structure of hair keratins. Our study demonstrates that peptides can be safely, efficiently, and promisingly used for hair perming. A bioinspired peptide, PepACS (PepA-PepC-SPB), was designed through bioinformatics. It can interact with keratin's sulfhydryl group in situ to remodel disulfide bonds without affecting hair fiber's tensile properties. The potential of PepACS to repair cuticle injuries is also observed through scanning electron microscope visualization. Besides, linking PepACS with mCherry enables hair dyeing. This research suggests that biomaterials can be applied in the hair care industry. STATEMENT OF SIGNIFICANCE: Chemical perming products can have negative impacts on people's health and hair fibers, making it essential to explore alternative methods. Peptides treatment is a promising option, but synthesizing sulfur-rich short peptides for hair perming has not been demonstrated before. In this paper, we utilized bioinformatics to design bio-inspired peptides that can interact with hair keratins and form curled shapes. Our study demonstrates that bioinformatics tools can be utilized to design bioinspired peptides with unique functions. Sulfur-rich short peptides can be heterologously expressed with fusion strategies, and PepACS can securely bind hair fibers through disulfide bonds. Importantly, perming hair with 0.01% PepACS maintains the mechanical properties of hair, and dyeing hair with the fusion protein PepACS_mCh can be facilitated by ethanol. These findings suggest that the strategy of perming and dyeing hair through peptides is non-injurious, and the peptides used for repairing hair damage show tremendous potential.


Asunto(s)
Tinturas para el Cabello , Queratinas Específicas del Pelo , Humanos , Queratinas Específicas del Pelo/análisis , Queratinas Específicas del Pelo/metabolismo , Tinturas para el Cabello/análisis , Tinturas para el Cabello/química , Tinturas para el Cabello/metabolismo , Proteínas/metabolismo , Péptidos/metabolismo , Aminoácidos/análisis , Cabello/química , Disulfuros/metabolismo
13.
Opt Express ; 31(3): 4122-4128, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785387

RESUMEN

Sidewall tilting is an important parameter to describe the grating morphology and would affect the diffraction efficiency of three-dimensional (3D) display devices based on pixelated nanogratings. However, there is currently a lack of a non-destructive measurement method that can accurately measure the sidewall tilting of the pixelated nanogratings. This is mainly because the kind of nanograting is manufactured in a micron-scale pixel region and the grating lines generally have various directions to ensure that the display device can display images smoothly. In this work, we propose to use a home-made imaging Mueller matrix ellipsometer (IMME) to monitor sidewall tilting of pixelated nanogratings. Simulation and experiments were carried out to characterize the sidewall tilting angle. Through the combination of Mueller matrix elements, we can quickly and qualitatively identify the tilting angle for the purpose of on-line quality monitoring of the device. Through the inverse calculation of the Mueller matrix, we can accurately and quantitatively obtain the value of the tilting, so as to meet the demands of the device design. It is expected the proposed method can provide guidance for the identification and detection of tilting in 3D display elements based on pixelated gratings.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35954897

RESUMEN

With the acceleration of urban construction, the pollutant emission of non-road mobile machinery such as construction machinery is becoming more and more prominent. In this paper, a portable emissions measurement system (PEMS) tested the emissions of eight different types of construction machinery under actual operating conditions and was used for idling, walking, and working under the different emission reduction techniques. The results showed that the pollutant emission of construction machinery is affected by the pollutant contribution of working conditions. According to different emission reduction techniques, the diesel oxidation catalyst (DOC) can reduce carbon monoxide (CO) by 41.6-94.8% and hydrocarbon (HC) by 92.7-95.1%, catalytic diesel particulate filter (CDPF) can reduce particulate matter (PM) by 87.1-99.5%, and selective catalytic reduction (SCR) using urea as a reducing agent can reduce nitrogen oxides (NOx) by 60.3% to 80.5%. Copper-based SCR is better than vanadium-based SCR in NOx reduction. In addition, the study found that when the enhanced 3DOC + CDPF emission reduction technique is used on forklifts, DOC has a "low-temperature saturation effect", which will reduce the emission reduction effect of CO and THC. The use of Burner + DOC + CDPF emission reduction techniques and fuel injection heating process will increase CO's emission factors by 3.2-3.5 and 4.4-6.7 times compared with the actual operating conditions.


Asunto(s)
Contaminantes Atmosféricos , Sidnonas , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/prevención & control
15.
Opt Lett ; 47(14): 3580-3583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838735

RESUMEN

The diffraction grating, as an element that can control the direction of the emitted light, is the key component used in holographic sampling three-dimensional (3D) displays. The structural accuracy of nanogratings greatly affects the precision of light modulation, thus influencing the cross talk and resolution in 3D displays. It is of great significance for the nondestructive measurement of nanogratings. However, existing measurement methods have certain limitations such as destructiveness and low measurement efficiency in the face of measuring such pixelated nanogratings. In this work, aimed at the measurement requirements and challenges of pixelated nanogratings in 3D displays, we propose to use a self-designed imaging Mueller matrix ellipsometer (IMME) for grating characterization. A sample containing 6 periods and 10 orientations of pixelated gratings is investigated to verify the effectiveness of the method used. Through the measurement and fitting data, the measurement data obtained by using the IMME can be well matched with the theoretical results. At the same time, the extraction results of the structural parameters, periods, and orientations are also consistent with the measurement results from scanning electron microscopy. It is expected that the IMME will provide a guarantee for the accurate display of 3D holography.

16.
Foods ; 11(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35741918

RESUMEN

Deoxynivalenol (DON) contamination in germs and germ oil is posing a serious threat to food and feed security. However, the transformation pathway, the distribution of DON, and its degradation products in edible oil refining have not yet been reported in detail. In this work, we systematically explored the variation of DON in maize germ oil during refining and demonstrated that the DON in germ oil can be effectively removed by refining, during which a part of DON was transferred to the wastes, and another section of DON was degraded during degumming and alkali refining. Moreover, the DON degradation product was identified to be norDON B by using the ultraviolet absorption spectrum, high-performance liquid chromatography (HPLC), ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), and nuclear magnetic resonance (NMR) methods, and the degradation product was found to be distributed in waste products during oil refining. This study provides a scientific basis and useful reference for the production of non-mycotoxins edible oil by traditional refining.

17.
Adv Healthc Mater ; 11(14): e2200641, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35521819

RESUMEN

Clinically, bacteria-induced contagion and insufficient osseointegrative property inevitably elicit the failure of orthopedic implants. Herein, a heterostructured coating consisting of simvastatin (SIM)-laden metal-organic frameworks and polydopamine nanolayers is created on a porous bioinert polyetheretherketone implant. The heterostructured coating significantly promotes cytocompatibility and osteogenic differentiation through multimodal osteogenicity mechanisms of zinc ion (Zn2+ ) therapy, SIM drug therapy, and surface micro-/nano-topological stimulation. Under the illumination of near-infrared (NIR) light, singlet oxygen (1 O2 ) and local hyperthermia are produced; besides, NIR light dramatically accelerates the release of Zn2+ ions from heterostructured coatings. Gram-positive and -negative bacteria are effectively eradicated by the synergy of photothermal/photodynamic effects and photo-induced accelerated delivery of Zn2+ ions. The superior osteogenicity and osseointegration, as well as photoswitchable disinfection controlled by NIR light are corroborated via in vivo results. This work highlights the great potential of photoresponsive heterostructured orthopedic implants in treatment of the noninvasive bone reconstruction of bacteria-associated infectious tissues through multimodal phototherapy and photoswitchable ion-therapy.


Asunto(s)
Estructuras Metalorgánicas , Osteogénesis , Antibacterianos/farmacología , Benzofenonas , Desinfección , Indoles , Iones/farmacología , Estructuras Metalorgánicas/farmacología , Polietilenglicoles/farmacología , Polímeros , Staphylococcus aureus
18.
RSC Adv ; 12(18): 11090-11099, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35425054

RESUMEN

Drug-free antibacterial strategies are of great significance for pathogenic bacterial infection treatment in clinical practice. Phototherapy with antibacterial function plays a vital role in mainstream germicidal research. However, phototherapy could lead to residual heat and excess reactive oxygen species (ROS), which are the main side-effects during antibacterial treatment. Unique CoFe2O4/MXene (CM) nanoenzymes, which were fabricated with electrostatic interactions, have been designed to conquer those challenges caused by side-effects of phototherapy in our research. The CM nanoenzymes possess many promising properties including photothermal and photodynamic induced phototherapy and mimic peroxidase (POD), glutathione oxidase (GSHOx), and catalase (CAT). Upon treatment with near-infrared (NIR) light, CM nanoenzymes can create a local high-temperature circumstance as well as raise bacterial membrane permeability. Furthermore, the photodynamic process and multi-enzyme-mimicking activities of CM enzymes boost the interbacterial ROS level. Herein, bacteria can hardly survive in synergistic phototherapy and multi-enzyme-mimicking catalytic therapy in vitro and in vivo. Meanwhile, the CM nanoenzymes exhibit excellent biocompatibility in vitro and in vivo. Overall, this research establishes a strong foundation for effectively employing nanoenzymes, leading to a new way to cure bacterial infections.

19.
Sci Rep ; 11(1): 23300, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857832

RESUMEN

Currently, the most widely used screening methods for hyperuricemia (HUA) involves invasive laboratory tests, which are lacking in many rural hospitals in China. This study explored the use of non-invasive physical examinations to construct a simple prediction model for HUA, in order to reduce the economic burden and invasive operations such as blood sampling, and provide some help for the health management of people in poor areas with backward medical resources. Data of 9252 adults from April to June 2017 in the Affiliated Hospital of Guilin Medical College were collected and divided randomly into a training set (n = 6364) and a validation set (n = 2888) at a ratio of 7:3. In the training set, non-invasive physical examination indicators of age, gender, body mass index (BMI) and prevalence of hypertension were included for logistic regression analysis, and a nomogram model was established. The classification and regression tree (CART) algorithm of the decision tree model was used to build a classification tree model. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analyses (DCA) were used to test the distinction, accuracy and clinical applicability of the two models. The results showed age, gender, BMI and prevalence of hypertension were all related to the occurrence of HUA. The area under the ROC curve (AUC) of the nomogram model was 0.806 and 0.791 in training set and validation set, respectively. The AUC of the classification tree model was 0.802 and 0.794 in the two sets, respectively, but were not statistically different. The calibration curves and DCAs of the two models performed well on accuracy and clinical practicality, which suggested these models may be suitable to predict HUA for rural setting.


Asunto(s)
Hiperuricemia/diagnóstico , Hiperuricemia/epidemiología , Población Rural/estadística & datos numéricos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , China/epidemiología , Árboles de Decisión , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Hiperuricemia/etiología , Hiperuricemia/prevención & control , Modelos Logísticos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Nomogramas , Prevalencia , Curva ROC , Factores Sexuales , Adulto Joven
20.
Front Med (Lausanne) ; 8: 739883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650999

RESUMEN

Objectives: To evaluate the relationship between systemic lupus erythematosus (SLE) and the risk of retinal vasculitis (RV) using a population-based database. Methods: Using the 1997-2013 Taiwanese National Health Insurance Database, we identified newly diagnosed SLE patients between 2001 and 2012 as the SLE group. We matched the SLE group with non-SLE individuals selected from a representative one million sample of the population in a 1:20 ratio for age, sex, and the year of the index date. After adjusting for potential confounders, including urbanization of the patient's residence, the level of the payroll-related insured amount, and selected comorbidities, we examined the association between SLE and the risk of RV using the Cox proportional hazard model shown as hazard ratios (HRs) with 95% confidence intervals (CIs). Sensitivity analyses were conducted using various definitions of RV. Results: We included 11,586 patients with SLE and 231,720 matched non-SLE individuals. The mean age of the study participants was 36.7 ± 16.9 years, and the female-to-male ratio was 6.8:1. The incidence rates of RV were 56.39 cases per 100,000 person-years and 2.45 cases per 100,000 person-years, respectively. After adjusting for potential confounders, the incidence rate of RV in the SLE cohort was 22.99 times higher than that in the non-SLE cohort (56.39 vs. 2.45 per 100,000 person-years). The adjusted HR for RV in the SLE group was 23.61 (95% CI, 14.94-37.32). The results remained robust in the sensitivity analysis. Conclusion: This nationwide population-based study revealed that SLE patients had a significantly higher risk of RV than non-SLE individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA