Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 176: 105976, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685511

RESUMEN

Phytochemical research on an extract of Notopterygium incisum yielded fifteen compounds (1-15), including four previously undescribed compounds (10-13). The structures of the unreported compounds were elucidated by spectroscopic and spectrometric data analysis such as 1D and 2D NMR, IR and HR-ESI-MS. Compounds 1-5 and 10-14 were isolated from N. incisum for the first time. 7S⁎,8R⁎-Phenethyl-(7-methoxy-8-isoeugenol)-ferulate (10), 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) are the undescribed ferulic acid derivatives. Additionly, the anti-neuroinflammatory effects of compounds were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. The pharmacological results showed that 6ß,10ß-epoxy-4α-hydroxy-guaiane (6), teuclatriol (7) and 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) inhibited the production and expression of nitric oxide (NO) in the LPS-induced BV2 cells in a concentration-dependent manner. Acorusnol (4), teucladiol (9), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) only inhibited the release of NO at concentration of 20 µM. Moreover, 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) reduced the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated BV2 cells. The results demonstrated 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) could be a potential anti-neuroinflammatory agent and is worthy of further study.

2.
Fitoterapia ; 169: 105611, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454779

RESUMEN

In this study, ten labdane-type diterpenoids 1-10 were isolated from a methanol extract of the whole plant Lagopsis supina, including three undescribed compounds 1-3. Their structures were determined by spectroscopic data analyses such as HR-ESI-MS, 1D, and 2D NMR, as well as comparison with literature data. At the same time, the absolute configuration of five compounds 2-5 and 10 was confirmed for the first time by the single crystal X-ray diffraction method. All the compounds were isolated from L. supina for the first time. The CCK-8 assay showed that all compounds had no significant damage to BV-2 microglial cells, and then screened their inhibitory effects of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells. The pharmacological results showed that compound 4 greatly inhibited LPS-stimulated NO release at the concentration of 10 µM, indicating that it has potential anti-neuroinflammatory activity.


Asunto(s)
Diterpenos , Medicamentos Herbarios Chinos , Lamiaceae , Estructura Molecular , Lamiaceae/química , Diterpenos/farmacología , Diterpenos/química , Medicamentos Herbarios Chinos/farmacología , Microglía , Lipopolisacáridos/farmacología , Óxido Nítrico
3.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364344

RESUMEN

The occurrence and development of neurodegenerative diseases is related to a variety of physiological and pathological changes. Neuroinflammation is one of the major factors that induces and aggravates neurodegenerative diseases. The most important manifestation of neuroinflammation is the activation of microglia. Therefore, inhibiting the abnormal activation of microglia is an important way to alleviate the occurrence of neuroinflammatory diseases. In this research, the inhibitory effect of tabersonine (Tab) on neuroinflammation was evaluated by establishing the BV2 neuroinflammation model induced by lipopolysaccharide (LPS). It was found that Tab significantly inhibited the production and expression of nitric oxide (NO), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and reactive oxygen species (ROS) in BV-2 cells stimulated by LPS. In addition, Tab can also inhibit the activation of nuclear factor-κB (NF-κB) induced by LPS, thus regulating inflammatory mediators such as inducible nitric oxide synthase (iNOS). These results indicated that Tab regulated the release of inflammatory mediators such as NO, IL-1ß, TNF-α, and IL-6 by inhibiting NF-κB signaling pathway, and exerting its anti-neuroinflammatory effect. This is the first report regarding the inhibition on LPS-induced neuroinflammation in BV2 microglia cells of Tab, which indicated the drug development potential of Tab for the treatment of neurodegenerative diseases.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Microglía , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Antiinflamatorios/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Óxido Nítrico/metabolismo
4.
J Food Biochem ; 46(12): e14448, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226816

RESUMEN

Oxygen is a necessary substance for life activities, but reduced oxygen utilization due to high altitude exposure and respiratory dysfunction diseases could lead to pathological changes in the organisms. Herein gypenosides, the active ingredients in the food and medicine resource plant Gynostemma pentaphyllum (Thunb.) Makino were found to alleviate hypoxia-induced injury in PC12 cells. Moreover, hypoxia induced an increase in Ca2+ and reactive oxygen species content, and such patterns were both significantly reduced by gypenosides treatment. At the same time, gypenosides significantly blocked the decrease of both NO content and mitochondrial membrane potential caused by hypoxia. Furthermore, gypenosides gavage treatment significantly prolonged the survival time of C57BL/6 mice in confinement up to 24.3% and enhanced the locomotor ability of mice. Therefore, gypenosides have good neuroprotective effects and hypoxia tolerance activity and have the prospect of being developed as a preventive and therapeutic drug for hypoxia-related diseases. PRACTICAL APPLICATIONS: Gypenosides can enhance tolerance of cells and mice to hypoxia and have the potential to be developed into hypoxia-resistant health food and drugs.


Asunto(s)
Gynostemma , Hipoxia , Ratas , Ratones , Animales , Células PC12 , Ratones Endogámicos C57BL , Hipoxia/tratamiento farmacológico , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA