Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(13): e202303243, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116883

RESUMEN

In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.

2.
Science ; 381(6661): 1011-1014, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651508

RESUMEN

A long-standing problem associated with silicone synthesis is contamination of the polymer products with 10 to 15% cyclic oligosiloxanes that results from backbiting reactions at the polymer chain ends. This process, in competition with chain propagation through ring-opening polymerization (ROP) of cyclic monomers, was thought to be unavoidable and routinely leads to a thermodynamically controlled reaction mixture (polymer/cyclic oligosiloxanes = 85/15). Here, we report that simple alcohol coordination to the anionic chain ends prevents the backbiting process and that a well-designed phosphonium cation acts as a self-quenching system in response to loss of coordinating alcohols to stop the reaction before the backbiting process begins. The combination of both effects allows a thermodynamically controlled ROP of the eight-membered siloxane ring D4 without producing undesirable cyclic oligosiloxanes.

3.
Dalton Trans ; 52(10): 3052-3058, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36779626

RESUMEN

Novel norbornene-based imine-stabilized silylium ions 2 have been synthesized via the simple reaction of sulfide-stabilized silylium ion 1 with carbonyl derivatives. Those silylium ions were fully characterized in solution and in the solid state by NMR spectroscopy and X-ray diffraction analysis as well as DFT calculations. Unlike the previously reported phosphine-stabilized silylium ion VI, behaving as a Lewis pair, calculations show that 2 have a strong Lewis acid character. Indeed, imine-stabilized silylium ions 2 are able to activate Si-H bonds and catalyzed the hydrosilylation of carbonyl derivatives under mild conditions.

4.
Cancers (Basel) ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35625963

RESUMEN

Star-shaped hydrophobic porphyrins, acting as powerful fluorescent two-photon photosensitizers for oxygen in organic solvents, can easily be loaded into PMLABe polymeric nanoparticles at various concentrations. In this contribution, the performance of these porphyrin-containing nanoparticles in terms of photodynamic therapy (PDT) is compared to those of the corresponding water-soluble porphyrin analogues when irradiated in MCF-7 cancer cells. While quite promising results are obtained for performing PDT with these nanoparticles, validating this approach as a mean for using more easily accessible and less expensive photosensitizers, from a synthetic perspective, we also show that their luminescence can still be used for bioimaging purposes in spite of their confinement in the nanoparticles, validating also the use of these nano-objects for theranostic purposes.

5.
Chem Commun (Camb) ; 55(81): 12231-12234, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31553001

RESUMEN

The photophysical properties of a new series of fluorenyl porphyrins bearing water-solubilising oligoethyleneglycol chains are described. These biocompatible compounds present very good two-photon absorption and singlet oxygen generation properties, while retaining some fluorescence in water. After testing in vitro on breast cancer cells, some of them were shown to be efficient non-toxic two-photon photosensitisers allowing for fluorescence imaging, thus demonstrating their theranostic potential.


Asunto(s)
Fluorenos/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Porfirinas/química , Materiales Biocompatibles/química , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Rayos Infrarrojos , Células MCF-7 , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Estructura Molecular , Imagen Óptica/métodos , Polietilenglicoles/química , Oxígeno Singlete/química , Relación Estructura-Actividad
6.
Dalton Trans ; 48(31): 11897-11911, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31310264

RESUMEN

Two dyads containing tris- and tetrakis-meso-fluorenyl-substituted porphyrin and ethynylruthenium units, 1 and 2, were investigated by emission spectro-electrochemical (SEC) methods for their potential use as fluorescence switches. The ruthenium group as a potential electron donor and the porphyrin as a potential electron acceptor are connected by a phenylene bridge in 1 and by a fluorenylene bridge in 2. The new fluorenyl-linked dyad 2 was probed by UV-visible, near-infrared (NIR) and infrared (IR) absorption SEC methods, and the properties interpreted with the aid of hybrid-DFT computations, for comparison with reported data for 1. The porphyrin-based fluorescence of 1 decreased in intensity upon oxidation to 1+ and decreased further on oxidising 1+ to 12+. A much weaker change in the fluorescence intensity of 2 was observed upon oxidation to 2+ but the intensity decreased upon subsequent oxidation of 2+ to 22+. These findings contrast with data reported for some other porphyrins appended with redox-active ruthenium or iron units, where fluorescence intensities increase upon oxidation of the peripheral metal centers, but they match data reported more recently for closely related arrays. A rationale for these apparently contrasting observations is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...