Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 133608, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960249

RESUMEN

Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ±â€¯1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ±â€¯1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.

2.
Food Chem ; 420: 136110, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105086

RESUMEN

Soy protein isolates (SPI) exhibit weaker emulsifying properties than those of animal proteins, thereby limiting their wide applicability. In this study, a novel plant-based antioxidant emulsifier was developed using SPI and young apple polyphenols (YAP), and its underlying interaction mechanisms were discovered using multispectral technology and molecular docking. YAP physically bound to SPI through hydrogen bonds and hydrophobic interactions, which significantly enhanced the free radicals scavenging, reducing, and metal ion chelating abilities of SPI by introducing free hydroxyl groups. Moreover, SPI modified by YAP exerted better emulsifying performance owing to a looser protein structure, reflected by a higher random coil and a lower α-helix content. In addition, YAP may bridge adjacent SPI molecules, promoting the adsorption and anchoring of SPI at the oil-water interface. SPI-YAP complexes are promising antioxidant emulsifiers that can be used to nano-deliver functional oils and nutrients, thereby broadening SPI and YAP applications in the food industry.


Asunto(s)
Antioxidantes , Proteínas de Soja , Emulsiones , Proteínas de Soja/química , Polifenoles/química , Simulación del Acoplamiento Molecular
3.
Int J Biol Macromol ; 222(Pt B): 1700-1708, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179870

RESUMEN

The lacquer seed oil has received extensive attention in the food industry due to its health function, such as regulating blood lipids. But its by-product, lacquer seed meal, is often used as a low-value-added product such as animal feed. Lacquer seed meal contains about 20 % protein, which has amphiphilic properties, and there is limited attention to its emulsifying properties. In this study, the impact of heat treatment on the emulsifying properties of lacquer seed protein isolate (LSPI) was investigated. The EAI and ESI of the 120 °C heated LSPI increased by 77.1 % and 55.2 %, respectively. The emulsions prepared using heat-modified LSPI (120 °C) further showed lower hydroperoxide, TBARS and protein carbonyl contents (only 61.3 %, 61.0 % and 58.6 % of control) after storage. This result indicates that heat-treated LSPI retarded lipid and protein oxidation in LSPI-stabilized emulsions during storage. Changes in protein structure showed that increasing heating temperature resulted in the depolymerization of tertiary structure, higher surface hydrophobicity and lower contents of α-helix of LSPI. These changes in protein structure made the heated LSPIs have better emulsifying properties. Therefore, these findings developed a new use of LSPI and greatly enhanced the potential of LSPI as a natural emulsifier in the food industry.


Asunto(s)
Calor , Laca , Animales , Emulsiones/química , Emulsionantes/química , Semillas/química , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...