Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134283, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613956

RESUMEN

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Asunto(s)
Sedimentos Geológicos , Plomo , Microplásticos , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Plomo/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microbiota/efectos de los fármacos , Poliésteres , Polietileno/toxicidad , Inundaciones , Bacterias/efectos de los fármacos
2.
J Hazard Mater ; 466: 133589, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271876

RESUMEN

Microplastics (MPs) accumulation in sediments has posed a huge threat to freshwater ecosystems. However, it is still unclear the effect of MPs on riparian sediment structures and contaminant adsorption under different hydrological processes. In this study, three concentrations of polyamide (PA) MPs-treated sediments (0.1%, 1%, and 10%, w/w) were subjected to natural (NA) exposure, dry-wet (DW) cycles, and freeze-thaw (FT) cycles. The results indicated that PA MPs-added sediment increased the micro-aggregates by 10.1%-18.6% after FT cycles, leading to a decrease in aggregate stability. The pH, OM, and DOC of sediments were significantly increased in DW and FT treatments. In addition, the increasing concentration of PA MPs showed an obvious decrease in aromaticity, humification, and molecular weight of sediment DOM in FT treatments. Also, high level of MPs was more likely to inhibit the formation of humic-like substances and tryptophan-like proteins. For DW and FT cycles, 0.1% and 1% PA MPs-treated sediments slightly increased the adsorption capacity of Cd(II), which may be ascribed to the aging of MPs. Further correlation analysis found that DW and FT altered the link between DOM indicators, and aggregate stability was directly related to the changes in sediment organic carbon. Our findings revealed the ecological risk of MPs accumulating in riparian sediments under typical hydrological processes.

3.
Bioresour Technol ; 394: 130272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185444

RESUMEN

Significant progress has been made in mitigating membrane biofouling by microbial quorum quenching (QQ). More efficient and survivable QQ strains need to be discovered. A new strain named Bacillus thuringiensis LZX01 was isolated in this study using a low carbon source concentration "starving" method from a membrane bioreactor (MBR). LZX01 secreted intracellular lactonase to enable QQ behavior and was capable of degrading 90 % of C8-HSL (200 ng/mL) within 30 min, which effectively delayed biofouling by inhibiting the growth of bacteria associated with biofouling and improving the hydrophilicity of bound extracellular polymeric substances. As a result, the membrane biofouling rate of MBR adding LZX01 was four times slower than that of the control MBR. Importantly, LZX01 maintains its QQ activity even in environments contaminated with typical toxic pollutants. Therefore, with high efficiency, toxicity resistance, and easy culture, LZX01 holds great potential and significant promise for biofouling control applications.


Asunto(s)
Bacillus thuringiensis , Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Percepción de Quorum , Reactores Biológicos/microbiología , Matriz Extracelular de Sustancias Poliméricas , Membranas Artificiales
4.
Environ Res ; 243: 117838, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056609

RESUMEN

The utilization of municipal sludge as a seed sludge for initiating the autotrophic nitrogen removal (ANR) process presents a challenge due to the negligible abundance of anaerobic ammonia-oxidizing bacteria (AnAOB). Here, a computational fluid dynamics model was used to simulate sludge volume fraction and sludge particle velocity. A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor (HHAIPBR) was operated for 175 d to enrich AnAOB from municipal sludge, and the performance of the ANR process was investigated. The start-up period of HHAIPBR inoculated with municipal sludge required approximately 69 d. A high nitrogen removal performance, with a mean total nitrogen removal efficiency of 82.1%, was obtained for 1 month. The simulation results validated the presence of sludge circulation and revealed the distribution characteristics of dissolved oxygen inside the reactor, further supporting the promotion of sludge granulation via the high height-to-diameter ratio. Nitrosomonas (3.31%) of Proteobacteria and Candidatus Brocadia (6.56%) of Planctomycetota were dominant in the HHAIPBR. This study presents a viable approach for the industrial cultivation of anammox sludge and the rapid start-up of the partial nitritation-anammox system.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción
5.
Water Res ; 241: 120120, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270946

RESUMEN

Current research focuses on efficient single-stage nitrogen removal from organic matter wastewater using the partial nitritation-anammox (PNA) process. In this study, we constructed a single-stage partial nitritation-anammox and denitrification (SPNAD) system using a dissolved oxygen-differentiated airlift internal circulation reactor. The system was operated continuously for 364 days at 250 mg/L NH4+-N. During the operation, the COD/NH4+-N ratio (C/N) was increased from 0.5 to 4 (0.5, 1, 2, 3, and 4), and the aeration rate (AR) gradually increased. The results showed that the SPNAD system maintained efficient and stable operation at C/N = 1-2 and AR = 1.4-1.6 L/min, with an average total nitrogen removal efficiency of 87.2%. The removal pathways of pollutants in the system and the interactions between microbes were revealed by analyzing the changes in sludge characteristics and microbial community structure at different phases. As the influent C/N increased, the relative abundance of Nitrosomonas and Candidatus Brocadia decreased, and that of denitrifying bacteria, such as Denitratisoma, increased to 44%. The nitrogen removal pathway of the system gradually changed from autotrophic nitrogen removal to nitrification-denitrification. At the optimum C/N, the SPNAD system synergistically removed nitrogen through PNA and nitrification-denitrification. Overall, the unique reactor configuration facilitated the formation of dissolved oxygen compartments, providing a suitable environment for different microbes. An appropriate organic matter concentration maintained the dynamic stability of microbial growth and interactions. These enhance microbial synergy and enable efficient single-stage nitrogen removal.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Nitrificación , Interacciones Microbianas
6.
Environ Sci Pollut Res Int ; 30(25): 67608-67620, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37118385

RESUMEN

Non-point source pollution from rainwater runoff presents a serious challenge for urban water management in many cities undergoing urbanization and experiencing climate change. To alleviate water resource conflicts in Changsha, China, this study comprehensively evaluated the pollution characteristics and first flush effect (FFE) of runoff from asphalt roads and colored steel plate roofs under seven rainfall events in April-May 2022. The runoff was collected and purified using bioretention ponds. The results showed that the peak runoff pollutant concentrations occurred within the first 20 min of runoff generation and then decreased to relatively stable levels, with maximum total suspended solids (TSS) concentration and chemical oxygen demand (CODCr) reaching 873.5 and 207.32 mg/L, respectively, for road runoff and 162 and 73.31 mg/L for roof runoff, respectively. The main pollutants were TSS and CODCr, followed by ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total phosphorus (TP), and nitrite nitrogen (NO2--N). Concentrations of pollutants and FFE for roof runoff were lower than those for road runoff. Road runoff had a more obvious FFE for TP and NH4+-N, whereas the roof runoff showed the presence of TP and NO3--N. An important implication is that treating the first 30% of surface runoff from rainfall events with long antecedent dry days or high rainfall amounts is necessary to improve water quality before discharge or utilization. The study also found that road and roof runoff, after treatment with bioretention ponds, exhibit good water quality, thus, allowing their use as reclaimed water or for miscellaneous purposes in urban areas. Overall, this study provides useful information for designing management measures to mitigate runoff pollution and reuse in Changsha.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Movimientos del Agua , Lluvia , China , Calidad del Agua , Ciudades , Fósforo/análisis , Nitrógeno/análisis
7.
Bioresour Technol ; 373: 128606, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36638895

RESUMEN

To address the existing economic and environmental issues associated with swine wastewater (SW) treatment, a process combining up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) was developed and continuously operated for 137 d. Bioreactor conversion and microbial community dynamics in reactors were analyzed. The UASB-AnMBR process yielded excellent pollutants removal efficiencies of 96% and 63% for chemical oxygen demand (COD) and total phosphorous (TP), respectively. More than 60% of Firmicutes (Terrisporobacter, Turicibacter, and Clostridium sensu stricto 1), which were dominated by Methanosaeta and Methanobacterium with relative abundances of 58.6% and 36.8% in the UASB and 22.5% and 40.3% in the AnMBR, respectively, converted complex compounds into organic acids for methanogenesis. This research presented an analysis of pollutants removal and microbial dynamics of UASB-AnMBR, which significantly affected the large-scale application of UASB-AnMBR process.


Asunto(s)
Contaminantes Ambientales , Microbiota , Purificación del Agua , Animales , Porcinos , Aguas del Alcantarillado/microbiología , Aguas Residuales , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Metano
8.
J Hazard Mater ; 431: 128643, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35359106

RESUMEN

In this study, the adsorption behavior of Pb(II) on natural-aged and virgin microplastics in different electrolyte solutions was investigated. The results demonstrated that natural-aged microplastics exhibited higher adsorption capacity for Pb(II) compared to virgin ones, and the addition of CaCl2 strongly inhibited the adsorption amount of Pb(II). The adsorption kinetics of Pb(II) adsorption were better fitted by the pseudo-second order model and Elovich equation, and were slowed down greatly at higher ionic strength. The rate-limiting steps of adsorption process were dominated by intra-particle diffusion. The adsorption isotherm of Pb(II) onto microplastics affected by salt ions can be well described by Freundlich model, the greater adsorption efficiency of natural-aged microplastics proved that adsorption process was multilayer and heterogeneous. In addition, pH significantly influenced the adsorption of Pb(II) due to the changes electrostatic interactions. The effect of fulvic acid in the electrolyte solutions was also revealed and attributed to the complexation with Na+ and Ca2+. Furthermore, the higher pH and ionic strength in different environmental water dramatically decreased adsorption capacity onto microplastics. Finally, it's confirmed that the adsorption mechanisms affected by salt ions mainly involve electrostatic interaction, surface complexation, and ionic exchange. These findings indicate that salt ions exert an important influence on the adsorption of heavy metals for MPs, which should be further concerned.


Asunto(s)
Microplásticos , Plásticos , Adsorción , Iones , Plomo
9.
J Environ Manage ; 302(Pt A): 113995, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700080

RESUMEN

Microplastics (MPs) have recently attracted much attention due to their widespread distribution in the aquatic environment. Microplastics can act as a vector of heavy metals in the aquatic environment, causing a potential threat to aquatic organisms and human health. This review mainly summarized the occurrence of microplastics in the aquatic environment and their interaction with heavy metals. Then, we considered the adsorption mechanisms of MPs and heavy metals, and further critically discussed the effects of microplastics properties and environmental factors (e.g., pH, DOM, and salinity) on the adsorption of heavy metals. Finally, the potential risks of combined exposure of MPs and heavy metals to aquatic biota were briefly evaluated. This work aims to provide a theoretical summary of the interaction between MPs and heavy metals, and is expected to serve as a reference for the accurate assessment of their potential risks in future studies.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Humanos , Metales Pesados/toxicidad , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Chemosphere ; 237: 124859, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549667

RESUMEN

Concentration polarization is an important issue in micellar enhanced ultrafiltration (MEUF) of wastewater containing heavy metal ions at low surfactant concentrations. In this paper, we studied removal of Cd(Ⅱ) by cross flow MEUF at low sodium dodecyl sulfate (SDS) concentration levels, and the role of concentration polarization in flux decline and Cd(Ⅱ) rejection was emphasized. Concentration polarization resistance and SDS concentration near membrane were calculated to characterize concentration polarization. The results showed that SDS concentration near membrane was 13 mM when feed concentration was merely 0.8 mM. By combining phase diagram of SDS, structures of SDS micelles in concentration polarization layer were deduced and thin layer structure transformed to porous structure formed by accumulated globular micelles when SDS concentration increased. Although micelles formed in concentration polarization layer was responsible for flux decline, they also provided adsorption sites for Cd(Ⅱ).


Asunto(s)
Cadmio/aislamiento & purificación , Ultrafiltración/métodos , Aguas Residuales/química , Adsorción , Membranas Artificiales , Metales Pesados , Micelas , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Ultrafiltración/instrumentación
11.
Environ Sci Pollut Res Int ; 26(30): 30731-30754, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31494849

RESUMEN

Surfactants widely exist in various kinds of wastewaters which could be treated by pressure-driven membrane separation (PDMS) techniques. Due to the special characteristics of surfactants, they may affect the performance of membrane filtration. Over the last two decades, there are a number of studies on treating wastewaters containing surfactants by PDMS. The current paper gives a review of the roles of surfactants in PDMS processes. The effects of surfactants on membrane performance were discussed via two aspects: influence of surfactants on membrane fouling and enhanced removal of pollutants by surfactants. The characteristics of surfactants in solution and at solid-liquid interface were summarized. Surfactants in membrane filtration processes cause membrane fouling mainly through adsorption, concentration polarization, pore blocking, and cake formation, and fouling degree may be influenced by various factors (feed water composition, membrane properties, and operation conditions). Furthermore, surfactants may also have a positive effect on membrane performance. Enhanced removal of various kinds of pollutants by PDMS in the presence of surfactants has been summarized, and the removal mechanism has been revealed. Based on the current reports, further studies on membrane fouling caused by surfactants and enhanced removal of pollutants by surfactant-aided membrane filtration were also proposed.


Asunto(s)
Filtración/métodos , Membranas Artificiales , Tensoactivos/química , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Adsorción , Incrustaciones Biológicas , Filtración/instrumentación , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
12.
Chemosphere ; 236: 124310, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31344626

RESUMEN

Quorum sensing (QS) is a process widely exist in bacteria, which refers to the cell-cell communication through secretion and sensing the specific chemical signal molecules named autoinducers. This review demonstrated recent research progresses on the specific impacts of signal molecules in the granular sludge reactors, such corresponding exogenous strategies contained the addition of QS signal molecules, QS-related enzymes and bacteria associated with QS process. Accordingly, the correlation between QS signaling molecule content and sludge granulation (including the formation and stability) was assumed, the comprehensive conclusion elucidated that some QS signals (acyl-homoserine lactone and Autoinducer 2) can accelerate the growth of particle diameter, the production of extracellular polymeric substance (EPS), microbial adhesion and change the microbiome structure. But diffusable signal factor (DSF) acted as a significant disincentive to the formation and stability of GS. As a result, it deserved serious attention on the value and role of QS signals in the GS. This review attempts to illuminate the potential method for addressing the main bottleneck: to accelerate the formation of granules and keep the high stability of GS for a long-term reactor. Therefore, review discussed the possible trends of GS: QS and intercellular/intracellular signaling which can lay a theoretical foundation for mechanism of GS formation and stability, would be of practical significance for further application in the future.


Asunto(s)
Percepción de Quorum/genética , Aguas del Alcantarillado/química
13.
Chemosphere ; 230: 40-50, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31102870

RESUMEN

Photocatalytic membranes (PMs), coupling of membrane filtration and photocatalysis, have exhibited the potential for application in the wastewater treatment. In this study, we firstly adopted the supramolecular aggregates of melamine (M), cyanuric acid (C), and urea (U) in specific dimethyl sulfoxide (DMSO) as precursors to prepare carbon nitride MCU-C3N4 with high photocatalytic performance, and a kind of novel-designed photocatalytic membrane was prepared via filtrating the mixture of graphene oxide (GO) nanosheets and MCU-C3N4 on PVDF membrane supports, and then crosslinked using glutaraldehyde (GA) to construct a steady coating on the GO/MCU-C3N4/PVDF membrane. GO/MCU-C3N4/PVDF composite membrane exhibited higher permeation flux than that of GO/PVDF membrane and exhibited excellent separation performance for oil-in-water emulsion. A visible light-driven self-cleaning four-stage filtration by a self-built dead-end filtration system was carried out to evaluate membrane antifouling property, and GO/MCU-C3N4/PVDF membrane (M2) possessed higher flux recovery ratio (FRR) (∼92.36%) and lower irreversible fouling resistance (Rir) ratio (∼8%) under 30min visible-light irradiation, maintaining relatively higher FRR (>72%) during 4 cycling of four-stage filtrating experiments. GO/MCU-C3N4/PVDF PMs are equipped with high permeation flux, separation performance, anti-fouling property and stability, indicating potential application in water treatment.


Asunto(s)
Filtración/instrumentación , Filtración/métodos , Glutaral/química , Grafito/química , Membranas Artificiales , Nitrilos/química , Polivinilos/química , Purificación del Agua/métodos , Catálisis , Luz , Triazinas/química
14.
Bioresour Technol ; 283: 261-269, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30913434

RESUMEN

In this paper, the immobilized quorum quenching (QQ) bacteria - microbial bag was added to a short-period membrane bioreactor (MBR) and its antifouling ability and mechanism were studied by monitoring the changes in transmembrane pressure (TMP), along with the production of N-acyl-homoserine lactones (AHLs), extracellular polymeric substance (EPS) and soluble microbial products (SMP). The QQ bacteria showed efficient mitigation of TMP increase in different membrane fouling stages. In the control MBR group, the TMP reached 43 kPa on the 4th day, while in the experimental group, TMP of QQ-MBR was only 18 kPa at the same time. The detection result of EPS and SMP content of protein and polysaccharide in MBRs showed that QQ bacteria had significant inhibitory effects on EPS and SMP. Also, the QQ bacterial exhibited excellent AHLs degradation rate in MBR reaction tank.


Asunto(s)
Incrustaciones Biológicas , Reactores Biológicos/microbiología , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Presión
15.
J Colloid Interface Sci ; 541: 356-366, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30708251

RESUMEN

Recently, the application of membranes faces a big challenge due to membrane fouling, to alleviate this situation, the hybridization of photocatalysis and membrane filtration has aroused significant attention. In this study, we firstly introduced melamine, cyanuric acid and urea in dimethyl sulfoxide (DMSO) as precursors to fabricated the MCU(DMSO)-C3N4 material with excellent photocatalytic performance, and immobilized it on PVDF membranes by vacuum filtration, subsequently adding polyethylene glycol and glutaraldehyde as crosslinkers from MCU-C3N4/PVDF membrane. The results demonstrate that with the MCU-C3N4 ratio increasing, the membrane flux was gradually decreased. Besides, the photocatalytic efficiencies of MCU-C3N4/PVDF for rhodamine B (RhB) and tetracycline hydrochloride (TC) degradation are 84.24% and 71.26% respectively, which are about 8 times higher than that of the original membrane. To evaluate antifouling performance of photocatalytic membranes, we conducted a four-stage filtration system, and the flux recovery ratio (FRR) of MCU-C3N4/PVDF membranes reached over 80% (optimum 91%) under visible light irradiating (λ > 420 nm) for 30 min. Meanwhile, under visible light irradiation reversible fouling (Rr) gradually became the dominant fouling factor instead of the irreversible fouling (Rir), indicating the excellent antifouling performance of MCU-C3N4/PVDF membranes. This novel method to modify membranes with MCU-C3N4 gives insight to photocatalytic and self-cleaning properties of photocatalytic composite membranes, providing theoretical basis for their broad application.

16.
Bioresour Technol ; 279: 195-201, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30735928

RESUMEN

Quorum quenching (QQ) has been proved to be an efficient method to mitigate biofouling in membrane bioreactors (MBRs). In this paper, in order to enhance practicability of QQ microcapsules, we prepared three types microcapsules with same alginate cores (SAs). The microcapsules with polyacrylonitrile (PAN) layer showed excellent performance in preventing cell leakage from the microcapsules, increasing service life and improving mechanical strength. And confocal laser scanning microscopy images demonstrated that there were very little dead bacteria in the microcapsules with both chitosan and PAN layer than microcapsules with only PAN layer because chitosan layer can protect bacteria entrapped in cores from the hurt caused by poisonous PAN solution. At the same time, the microcapsules with PAN layer presented more efficient anti-biofouling ability in the physical washing test. At last, the bacterial microcapsules coated with both chitosan and PAN layer showed an obvious biofouling mitigation during the MBRs operation.


Asunto(s)
Alginatos/química , Incrustaciones Biológicas , Percepción de Quorum , Reactores Biológicos/microbiología
17.
Environ Pollut ; 243(Pt A): 49-58, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30170206

RESUMEN

Heavy metals in the topsoil affected adversely human health through inhalation, ingestion and dermal contact. The health risk assessment, which are quantified from soil heavy metals sources under different land use, can provide an important reference basis for preventing and controlling the soil heavy metals pollution from the source. In this study, simple statistical analysis and Positive Matrix Factorization (PMF) were used to quantify sources of soil heavy metals; then a health risk assessment (HRA) model combined with PMF was proposed to assess quantificationally the human health risk (including non-cancer risk and cancer risk) from sources under residential-land, forest-land and farm land. Xiang River New District (XRNQ) was chosen as the example and four significant sources were quantitatively analyzed in the study. For cancer risk, industrial discharge was the largest source and accounted for about 69.6%, 69.7%, 56.5% for adults under residential-land, forest-land and farm-land, respectively. For non-cancer risk, industrial discharge was still the largest significant source under residential-land and forest-land and accounted for about 41.7%, 39.2% for adult, respectively; while agricultural activities accounted for about 51.8% for adult under farm-land. The risk trend of children, including cancer risk and non-cancer risk, was similar with adults. However, the non-cancer risk areas of adults affected by industrial discharge was higher than that of children, while the cancer risk areas of adults were on the contrary. The new exploration was useful to assess health risk quantification from sources under different land use, thus providing certain reference in preventing and controlling the pollution from the source for local authorities effectively.


Asunto(s)
Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Suelo/química , Adulto , Agricultura , Niño , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Bosques , Humanos , Residuos Industriales/análisis , Industrias
18.
Bioresour Technol ; 268: 733-748, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30149910

RESUMEN

Pharmaceuticals in surface waters and wastewater treatment plants (WWTPs) as emerging pollutants have become a major concern. In comparison with other wastewater treatments, removal of pharmaceuticals in MBR has received much attention. This review presents the source and occurrence of pharmaceuticals in WWTPs influents. Experimental studies related to the removal of pharmaceuticals during MBR treatment, key affecting factors (including the different stages of MBR process configuration and the process parameters), and the underlying mechanisms proposed to explain the biodegradation and adsorption behaviors, have been comprehensively discussed. Several transformation products of pharmaceuticals are also reviewed in this paper. Furthermore, further research is needed to gain more information about the multiple influence factors of the pharmaceuticals elimination, appropriate methods for promoting pharmaceuticals elimination, more essential removal pathways, effect of pharmaceuticals on membrane fouling, and the detection and analysis of transformation products.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Preparaciones Farmacéuticas , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua
19.
Chemosphere ; 211: 324-334, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077113

RESUMEN

A metal-free modified carbon nitride MCU(DMSO)-C3N4 (3:3:1) with a honeycomb-like morphology was prepared via firstly introducing cyanuric acid and urea into melamine in dimethyl sulfoxide (DMSO) as the precursor for the MCU-C3N4. A variety of characterization methods, including XRD, XPS, FT-IR, SEM, TEM, UV-vis, photoluminescence (PL), and photocurrent generation, were applied to investigate the structure, morphology, optical, and photoelectrochemical properties of the g-C3N4 and MCU-C3N4 (3:3:1). Rhodamine B (RhB), methylene blue (MB), and bisphenol A (BPA) were selected as target pollutants to evaluate photocatalytic activity of the MCU-C3N4 (3:3:1) under visible light irradiation. MCU-C3N4 (3:3:1) exhibits significantly enhanced photocatalytic activity compared with g-C3N4, where 99.49% RhB is removed within 40min, 97.7% MB is removed within 80 min, and 84.37% BPA is removed within 90 min. The improved photodegradation efficiency was mainly due to the larger surface area, the stronger REDOX ability, and the increased separation efficiency of photogenerated electron-hole pairs. The active radical trapping experiments and electron spin resonance tests indicated that h+ and O2- radicals were the dominant active species whereas OH radicals could be a minor factor. A possible photocatalytic mechanism is proposed. This strategy here provides an ideal platform for the design of photocatalysts with large surface area and high porosity for various pollutant controlling applications.


Asunto(s)
Luz , Nitrilos/química , Fotólisis , Catálisis , Nitrilos/efectos de la radiación , Oxidación-Reducción
20.
J Colloid Interface Sci ; 531: 433-443, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053688

RESUMEN

A low-cost and metal-free semiconductor-based photocatalyst driven by visible light has attracted great interest for water remediation. A relatively larger-surface area carbon nitride consisting of thin nanosheets is synthesized, firstly adopting melamine (M), cyanuric acid (C), urea (U) and dimethyl sulfoxide (DMSO) as the starting materials to form the supramolecular carbon nitride MCU(DMSO)-C3N4. Physical, chemical, and optical properties of the resulting samples were characterized. The photocatalytic performance of the MCU(DMSO)-C3N4 was evaluated under visible light irradiation using rhodamine B (RhB), tetracycline hydrochloride (TC), and ciprofloxacin (CIP) as target pollutants. Results showed that MCU-C3N4 exhibited much higher photocatalytic activity than pure g-C3N4, and when M, C, and U in DMSO with certain molar ratio (1:1:1) exhibited the highest activity. The larger surface area with more active reaction sites, increased bandgap with stronger REDOX ability, and higher separation efficiency of photogenerated electron-hole pairs contributed to higher photocatalytic activity. The photo-degradation is dominant by the active species (h+ and O2-) and converted product (OH). This exploration of MCU(DMSO)-C3N4 may open a window to the design of low-cost and highly efficient photocatalysis degradation systems for various wastewater treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA