Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Phytother Res ; 37(11): 5328-5340, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37500597

RESUMEN

Myocardial infarction (MI) is a common disease with high morbidity and mortality. Curdione is a sesquiterpenoid from Radix Curcumae. The current study is aimed to investigate the protective effect and mechanism of curdione on ferroptosis in MI. Isoproterenol (ISO) was used to induce MI injury in mice and H9c2 cells. Curdione was orally given to mice once daily for 7 days. Echocardiography, biochemical kits, and western blotting were performed on the markers of cardiac ferroptosis. Curdione at 50 and 100 mg/kg significantly alleviated ISO-induced myocardial injury. Curdione and ferrostatin-1 significantly attenuated ISO-induced H9c2 cell injury. Curdione effectively suppressed cardiac ferroptosis, evidenced by decreasing malondialdehyde and iron contents, and increasing glutathione (GSH) level, GSH peroxidase 4 (GPX4), and ferritin heavy chain 1 expression. Importantly, drug affinity responsive target stability, molecular docking, and surface plasmon resonance technologies elucidated the direct target Keap1 of curdione. Curdione disrupted the interaction between Keap1 and thioredoxin1 (Trx1) but enhanced the Trx1/GPX4 complex. In addition, curdione-derived protection against ISO-induced myocardial ferroptosis was blocked after overexpression of Keap1, while enhanced after Keap1 silence in H9c2 cells. These findings demonstrate that curdione inhibited ferroptosis in ISO-induced MI via regulating Keap1/Trx1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Infarto del Miocardio , Animales , Ratones , Peroxidasa , Isoproterenol/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Peroxidasas , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Transducción de Señal , Glutatión
3.
Phytomedicine ; 109: 154602, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610138

RESUMEN

BACKGROUND: Depression is a common complication after myocardial infarction (MI) that can seriously affect the prognosis of MI. PURPOSE: To investigate whether formononetin could ameliorate MI injury and depressive behaviours in a mouse model of MI with depression and elucidate its underlying molecular mechanisms. METHODS: Haemodynamic measurements (systolic blood pressure (SYS), the maximum rate of rise of LV pressure (± dp/dtmax)) and behavior tests (tail suspension test, sucrose preference test, forced swimming test) were used to evaluate the effects of formononetin on male C57BL/6N mice after left anterior descending (LAD) coronary artery ligation and chronic unpredictable stress. RT-qPCR, immunohistochemistry, immunofluorescence analysis, western blotting, molecular docking technology, surface plasmon resonance and gene-directed mutagenesis were used to clarify the underlying mechanism. RESULTS: Formononetin significantly suppressed the depressive behaviours and improved cardiac dysfunction in MI with depression mice model. Formononetin inhibited M1 polarization in macrophages/microglia, while promoting M2 polarization. Importantly, elevated serum IL-6 and IL-17A levels were found in patient with MI, and the patient serum induced M1 microglial polarization; however, formononetin reversed the polarization. Further mechanistic studies showed that formononetin inhibited GSK-3ß activity and downstream Notch1 and C/EBPα signaling pathways. Covalent molecular docking showed that formononetin bound to Cys199 of GSK-3ß and it has a high affinity for GSK-3ß. When Cys199 was mutation, the inhibitory effect of formononetin on GSK-3ß activity and M1 polarization in macrophages/microglia were also partly blocked. CONCLUSIONS: Our results firstly uncovered that formononetin improved cardiac function and suppressed depressive behaviours in mice after MI with depression by targeting GSK-3ß to regulate macrophage/microglial polarization. More importantly, IL-6 and IL-17A produced after MI may cause neuroinflammation, which might be the key factors for depression. Formononetin may be a potential drug for treating MI with depression.


Asunto(s)
Microglía , Infarto del Miocardio , Ratones , Masculino , Animales , Microglía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-17/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Macrófagos/metabolismo
4.
J Food Biochem ; 46(8): e14194, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35502470

RESUMEN

Plumula nelumbinis has great medicinal potential as a herbal tea and traditional drug in China. This study was aimed to evaluate the anticardiac fibrosis of the total alkaloids of P. nelumbinis (TAP). TAP at 50 mg/kg/day significantly ameliorated isoproterenol-induced cardiac fibrosis in mice (p < .05). The circulating lipidomics study revealed that TAP improved the lipid metabolism dysfunction in cardiac fibrosis. Meanwhile, TAP suppressed the lipid accumulation, decreased MDA level (p < .01) in heart, and increased FFA level (p < .01). Furthermore, integrating lipidomics, chemical profiles and pharmacology network analysis found that AMPK and PI3K/Akt signaling pathways were the potential targeted pathway by TAP to regulate lipid metabolism dysfunction including glycerophospholipid metabolism. Above all, TAP provided a potential anticardiac fibrosis effect partly through regulation of lipid profiles. PRACTICAL APPLICATIONS: The total alkaloids of Plumula nelumbinis (TAP) suppressed ISO-induced cardiac fibrosis in mice. Network pharmacology analysis and experiments revealed that TAP-regulated AMPK and PI3K/Akt signaling pathway to improve lipid metabolism disorder in cardiac fibrosis. This study provides evidence to the therapeutic potential of TAP in the treatment of ISO-induced cardiac fibrosis and could be a drug candidate for prevention and treatment of cardiac fibrosis.


Asunto(s)
Alcaloides , Lipidómica , Proteínas Quinasas Activadas por AMP , Alcaloides/análisis , Alcaloides/farmacología , Animales , Fibrosis , Lípidos , Ratones , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...