Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Nutr ; : 1-13, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364656

RESUMEN

Deficiency of vitamin B12 (B12 or cobalamin), an essential water-soluble vitamin, leads to neurological damage, which can be irreversible and anaemia, and is sometimes associated with chronic disorders such as osteoporosis and cardiovascular diseases. Clinical tests to detect B12 deficiency lack specificity and sensitivity. Delays in detecting B12 deficiency pose a major threat because the progressive decline in organ functions may go unnoticed until the damage is advanced or irreversible. Here, using targeted unbiased metabolomic profiling in the sera of subjects with low B12 levels v control individuals, we set out to identify biomarker(s) of B12 insufficiency. Metabolomic profiling identified seventy-seven metabolites, and partial least squares discriminant analysis and hierarchical clustering analysis showed a differential abundance of taurine, xanthine, hypoxanthine, chenodeoxycholic acid, neopterin and glycocholic acid in subjects with low B12 levels. Random forest multivariate analysis identified a taurine/chenodeoxycholic acid ratio, with an AUC score of 1, to be the best biomarker to predict low B12 levels. Mechanistic studies using a mouse model of B12 deficiency showed that B12 deficiency reshaped the transcriptomic and metabolomic landscape of the cell, identifying a downregulation of methionine, taurine, urea cycle and nucleotide metabolism and an upregulation of Krebs cycle. Thus, we propose taurine/chenodeoxycholic acid ratio in serum as a potential biomarker of low B12 levels in humans and elucidate using a mouse model of cellular metabolic pathways regulated by B12 deficiency.

2.
Science ; 380(6649): eabn9257, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289866

RESUMEN

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Asunto(s)
Envejecimiento , Taurina , Animales , Humanos , Ratones , Envejecimiento/sangre , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Senescencia Celular , Haplorrinos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Taurina/sangre , Taurina/deficiencia , Taurina/farmacología , Suplementos Dietéticos , Daño del ADN/efectos de los fármacos , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...