Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588621

RESUMEN

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Asunto(s)
Óxido Ferrosoférrico , Nitritos , Nitritos/metabolismo , Transporte de Electrón , Anaerobiosis , Metano , Electrones , Desnitrificación , Oxidación-Reducción , Bacterias/metabolismo , Bacterias Anaerobias/metabolismo , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
2.
J Environ Manage ; 340: 118001, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105103

RESUMEN

Anaerobic ammonium oxidation (Anammox) coupled with Denitrifying anaerobic methane oxidation (DAMO) is an attractive technology to simultaneously remove nitrogen and mitigate methane emissions from wastewater. However, its nitrogen removal rate is usually limited due to the low methane mass transfer efficiency, low metabolic activity and slow growth rate of functional microorganisms. In this study, GAC and Fe-modified GAC (Fe-GAC) were added into Anammox-DAMO process to investigate their effects on nitrogen removal rates and then reveal the mechanism. The results showed that after 80-day experiments, the total nitrogen removal rate was slightly improved in the presence of GAC (3.94 mg L-1·d-1), while it reached high as 16.66 mg L-1·d-1 in the presence of Fe-GAC, which was ca.17 times that of non-amended control group (0.96 mg L-1·d-1). The addition of Fe-GAC stimulated the secretion of extracellular polymeric substance (EPS), improved the electron transfer capability and promoted the production of Cytochrome C. Besides, the key functional enzyme activities (HZS, HDH and NAR) were highest in the Fe-GAC group, which were approximately 1.06-1.56 times higher than those of GAC-amended and blank control groups. Microbial community analysis showed that the abundance of the DAMO archaea (Candidatus Methanoperedens) and Anammox bacteria (Candidatus Brocadia) were remarkably increased with the addition of Fe-GAC. Functional genes associated with nitrogen removal and methane oxidation in Fe-GAC system were up-regulated. This study provides a promising strategy for achieving high rate of nitrogen removal upon Anammox-DAMO process.


Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Metano , Nitrógeno/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Desnitrificación , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Oxidación-Reducción , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Nitritos/metabolismo
3.
Environ Res ; 214(Pt 4): 114207, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030910

RESUMEN

Denitrifying anaerobic methane oxidation (DAMO) is a bioprocess utilizing methane as the electron source to remove nitrate or nitrite, but denitrification rate especially for nitrate-dependent DAMO is usually limited due to the low methane mass transfer efficiency. In this research, granular active carbon (GAC) was added to enhance the nitrate-dependent DAMO process. The results showed that the maximum nitrate removal rate of GAC assisted DAMO system reached as high as 61.17 mg L-1 d-1, 8 times higher than that of non-amended control SBR. The porous structure of GAC can not only adsorb methane, but also keep the internal DAMO archaea from being washed out, and thus benefits for DAMO archaea enrichment. The relative abundance of DAMO archaea accounted for 96.3% in GAC-SBR, which was significantly higher than that of non-amended control SBR system (29.9%). Furthermore, GAC amendment up-regulated metabolic status of denitrification and methane oxidation based on gene sequence composition. The absolute abundances of function genes (NC10 pmoA and ANME mcrA) in GAC-SBR were almost 20 times higher than that of non-amended control SBR. This study provides a novel technique to stimulate the nitrate-dependent DAMO process.


Asunto(s)
Metano , Nitratos , Anaerobiosis , Reactores Biológicos , Carbón Orgánico , Desnitrificación , Nitritos , Óxidos de Nitrógeno , Oxidación-Reducción
4.
J Environ Manage ; 318: 115527, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35759969

RESUMEN

In this study, single-chamber three-electrode electrochemical sequencing batch reactor (ESBR) was set up to investigate the impact of applying potential on denitrifying anaerobic methane oxidation (DAMO) process. When the applied potential was +0.8 V, the conversion rate of nitrite to nitrogen was superior to those of other potentials. With the optimal potential of +0.8 V for 60 days, the nitrite removal rate of ESBR could reach 3.34 ± 0.28 mg N/L/d, which was 4.5 times more than that of the non-current control (0.74 ± 0.16 mg N/L/d). The DAMO functional bacteria Candidatus Methylomirabilis exhibited noticeable enrichment under applying potential, and its functional gene of pmoA was significantly expressed. Through untargeted LC-MS metabolomics analysis, applied potential was shown to affect the regulation of prior metabolites including spermidine, spermine and glycerophosphocholine that were related to the metabolic pathways of glycerophospholipid metabolism and arginine and proline metabolism, which had positive effects on DAMO process. These results show that applying electric potential could be a useful strategy in DAMO process used for methane and nitrogen removal.


Asunto(s)
Metano , Nitritos , Anaerobiosis , Bacterias Anaerobias/metabolismo , Reactores Biológicos , Desnitrificación , Metano/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción
5.
Materials (Basel) ; 15(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35057135

RESUMEN

High energy density materials (HEDM) are the subject of an extensive research effort in relation to the use of these compounds as components of rocket propellants, powders, and formulations of high-performance explosives. Hexanitrohexaazaisowurtzitane (HNIW, i.e., CL-20) has received much attention in these research fields for its specific impulse, burning rate, ballistics, and detonation velocity. In this paper, the development and performances of the explosives from the first to the fourth generation are briefly summarized, and the synthesis status of the fourth-generation explosive, HNIW, is reviewed. The key issues that restrict the development of industrial amplification synthesis of HNIW are analyzed, and the potential directions of development are proposed. It is pointed out that to synthesize new and efficient catalysts is the key to making the cost-effective manufacturing of CL-20 a reality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA