Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4318, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773067

RESUMEN

Neural circuits with specific structures and diverse neuronal firing features are the foundation for supporting intelligent tasks in biology and are regarded as the driver for catalyzing next-generation artificial intelligence. Emulating neural circuits in hardware underpins engineering highly efficient neuromorphic chips, however, implementing a firing features-driven functional neural circuit is still an open question. In this work, inspired by avoidance neural circuits of crickets, we construct a spiking feature-driven sensorimotor control neural circuit consisting of three memristive Hodgkin-Huxley neurons. The ascending neurons exhibit mixed tonic spiking and bursting features, which are used for encoding sensing input. Additionally, we innovatively introduce a selective communication scheme in biology to decode mixed firing features using two descending neurons. We proceed to integrate such a neural circuit with a robot for avoidance control and achieve lower latency than conventional platforms. These results provide a foundation for implementing real brain-like systems driven by firing features with memristive neurons and put constructing high-order intelligent machines on the agenda.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas , Robótica , Robótica/instrumentación , Robótica/métodos , Neuronas/fisiología , Animales , Potenciales de Acción/fisiología , Gryllidae/fisiología , Red Nerviosa/fisiología , Inteligencia Artificial , Reacción de Prevención/fisiología
2.
Neural Netw ; 175: 106312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642415

RESUMEN

In recent years, there has been a significant advancement in memristor-based neural networks, positioning them as a pivotal processing-in-memory deployment architecture for a wide array of deep learning applications. Within this realm of progress, the emerging parallel analog memristive platforms are prominent for their ability to generate multiple feature maps in a single processing cycle. However, a notable limitation is that they are specifically tailored for neural networks with fixed structures. As an orthogonal direction, recent research reveals that neural architecture should be specialized for tasks and deployment platforms. Building upon this, the neural architecture search (NAS) methods effectively explore promising architectures in a large design space. However, these NAS-based architectures are generally heterogeneous and diversified, making it challenging for deployment on current single-prototype, customized, parallel analog memristive hardware circuits. Therefore, investigating memristive analog deployment that overrides the full search space is a promising and challenging problem. Inspired by this, and beginning with the DARTS search space, we study the memristive hardware design of primitive operations and propose the memristive all-inclusive hypernetwork that covers 2×1025 network architectures. Our computational simulation results on 3 representative architectures (DARTS-V1, DARTS-V2, PDARTS) show that our memristive all-inclusive hypernetwork achieves promising results on the CIFAR10 dataset (89.2% of PDARTS with 8-bit quantization precision), and is compatible with all architectures in the DARTS full-space. The hardware performance simulation indicates that the memristive all-inclusive hypernetwork costs slightly more resource consumption (nearly the same in power, 22%∼25% increase in Latency, 1.5× in Area) relative to the individual deployment, which is reasonable and may reach a tolerable trade-off deployment scheme for industrial scenarios.


Asunto(s)
Redes Neurales de la Computación , Simulación por Computador , Aprendizaje Profundo , Algoritmos
3.
Bioresour Bioprocess ; 11(1): 43, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664309

RESUMEN

L-Threonine is an important feed additive with the third largest market size among the amino acids produced by microbial fermentation. The GRAS (generally regarded as safe) industrial workhorse Corynebacterium glutamicum is an attractive chassis for L-threonine production. However, the present L-threonine production in C. glutamicum cannot meet the requirement of industrialization due to the relatively low production level of L-threonine and the accumulation of large amounts of by-products (such as L-lysine, L-isoleucine, and glycine). Herein, to enhance the L-threonine biosynthesis in C. glutamicum, releasing the aspartate kinase (LysC) and homoserine dehydrogenase (Hom) from feedback inhibition by L-lysine and L-threonine, respectively, and overexpressing four flux-control genes were performed. Next, to reduce the formation of by-products L-lysine and L-isoleucine without the cause of an auxotrophic phenotype, the feedback regulation of dihydrodipicolinate synthase (DapA) and threonine dehydratase (IlvA) was strengthened by replacing the native enzymes with heterologous analogues with more sensitive feedback inhibition by L-lysine and L-isoleucine, respectively. The resulting strain maintained the capability of synthesizing enough amounts of L-lysine and L-isoleucine for cell biomass formation but exhibited almost no extracellular accumulation of these two amino acids. To further enhance L-threonine production and reduce the by-product glycine, L-threonine exporter and homoserine kinase were overexpressed. Finally, the rationally engineered non-auxotrophic strain ZcglT9 produced 67.63 g/L (17.2% higher) L-threonine with a productivity of 1.20 g/L/h (108.0% higher) in fed-batch fermentation, along with significantly reduced by-product accumulation, representing the record for L-threonine production in C. glutamicum. In this study, we developed a strategy of reconstructing the feedback regulation of amino acid metabolism and successfully applied this strategy to de novo construct a non-auxotrophic L-threonine producing C. glutamicum. The main end by-products including L-lysine, L-isoleucine, and glycine were almost eliminated in fed-batch fermentation of the engineered C. glutamicum strain. This strategy can also be used for engineering producing strains for other amino acids and derivatives.

4.
Sci Adv ; 10(12): eadl3135, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517972

RESUMEN

Neuro-symbolic artificial intelligence has garnered considerable attention amid increasing industry demands for high-performance neural networks that are interpretable and adaptable to previously unknown problem domains with minimal reconfiguration. However, implementing neuro-symbolic hardware is challenging due to the complexity in symbolic knowledge representation and calculation. We experimentally demonstrated a memristor-based neuro-fuzzy hardware based on TiN/TaOx/HfOx/TiN chips that is superior to its silicon-based counterpart in terms of throughput and energy efficiency by using array topological structure for knowledge representation and physical laws for computing. Intrinsic memristor variability is fully exploited to increase robustness in knowledge representation. A hybrid in situ training strategy is proposed for error minimizing in training. The hardware adapts easier to a previously unknown environment, achieving ~6.6 times faster convergence and ~6 times lower error than deep learning. The hardware energy efficiency is over two orders of magnitude greater than field-programmable gate arrays. This research greatly extends the capability of memristor-based neuromorphic computing systems in artificial intelligence.

5.
Microbiome ; 11(1): 211, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752514

RESUMEN

BACKGROUND: Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS: We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS: These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Arrecifes de Coral , Simbiosis/fisiología , Fotosíntesis
6.
Medicina (Kaunas) ; 59(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37629706

RESUMEN

Background and Objectives: The incidence of diabetic osteoporosis, an important complication of diabetes mellitus, is increasing gradually. This study investigated the combined effect of the Zuogui pill (ZGP) and eldecalcitol (ED-71), a novel vitamin D analog, on type 2 diabetic osteoporosis (T2DOP) and explored their action mechanism. Materials and Methods: Blood glucose levels were routinely monitored in db/db mice while inducing T2DOP. We used hematoxylin and eosin staining, Masson staining, micro-computed tomography, and serum biochemical analysis to evaluate changes in the bone mass and blood calcium and phosphate levels of mice. Immunohistochemical staining was performed to assess the osteoblast and osteoclast statuses. The MC3T3-E1 cell line was cultured in vitro under a high glucose concentration and induced to undergo osteogenic differentiation. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence, ALP, and alizarin red staining were carried out to detect osteogenic differentiation and PI3K-AKT signaling pathway activity. Results: ZGP and ED-71 led to a dramatic decrease in blood glucose levels and an increase in bone mass in the db/db mice. The effect was strongest when both were used together. ZGP combined with ED-71 promoted osteoblast activity and inhibited osteoclast activity in the trabecular bone region. The in vitro results revealed that ZGP and ED-71 synergistically promoted osteogenic differentiation and activated the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 or AKT inhibitor ARQ092 altered the synergistic action of both on osteogenic differentiation. Conclusions: The combined use of ZGP and ED-71 reduced blood glucose levels in diabetic mice and promoted osteogenic differentiation through the PI3K-AKT signaling pathway, resulting in improved bone mass. Our study suggests that the abovementioned combination constitutes an effective treatment for T2DOP.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Osteoporosis , Animales , Ratones , Osteogénesis , Glucemia , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Microtomografía por Rayos X , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Vitamina D , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico
7.
Proc Natl Acad Sci U S A ; 120(33): e2300839120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549271

RESUMEN

Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Metilación de ADN , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/metabolismo , Regeneración/genética , Cromatina/metabolismo , Mamíferos/genética
8.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585469

RESUMEN

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción SOXC , Animales , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Diferenciación Celular , Factores de Transcripción/metabolismo , Epigénesis Genética , Órgano Espiral , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
10.
Materials (Basel) ; 16(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37297196

RESUMEN

Annular laser metal deposition (ALMD) is a rising technology that fabricates near-net-shaped components. In this research, a single factor experiment with 18 groups was designed to study the influence of process parameters on the geometric characteristics (bead width, bead height, fusion depth, and fusion line) and thermal history of Ti6Al4V tracks. The results show that discontinuous and uneven tracks with pores or large-sized incomplete fusion defects were observed when the laser power was less than 800 W or the defocus distance was -5 mm. The laser power had a positive effect on the bead width and height, while the scanning speed had the opposite effect. The shape of the fusion line varied at different defocus distances, and the straight fusion line could be obtained with the appropriate process parameters. The scanning speed was the parameter that had the greatest effect on the molten pool lifetime and solidification time as well as the cooling rate. In addition, the microstructure and microhardness of the thin wall sample were also studied. Many clusters with various sizes in different zones were distributed within the crystal. The microhardness ranged from 330 HV to 370 HV.

11.
Anal Chem ; 95(11): 4829-4833, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36897266

RESUMEN

With fast growth, synthetic biology powers us with the capability to produce high commercial value products in an efficient resource/energy-consuming manner. Comprehensive knowledge of the protein regulatory network of a bacterial host chassis, e.g., the actual amount of the given proteins, is the key to building cell factories for certain target hyperproduction. Many talent methods have been introduced for absolute quantitative proteomics. However, for most cases, a set of reference peptides with isotopic labeling (e.g., SIL, AQUA, QconCAT) or a set of reference proteins (e.g., commercial UPS2 kit) needs to be prepared. The higher cost hinders these methods for large sample research. In this work, we proposed a novel metabolic labeling-based absolute quantification approach (termed nMAQ). The reference Corynebacterium glutamicum strain is metabolically labeled with 15N, and a set of endogenous anchor proteins of the reference proteome is quantified by chemically synthesized light (14N) peptides. The prequantified reference proteome was then utilized as an internal standard (IS) and spiked into the target (14N) samples. SWATH-MS analysis is performed to obtain the absolute expression levels of the proteins from the target cells. The cost for nMAQ is estimated to be less than 10 dollars per sample. We have benchmarked the quantitative performance of the novel method. We believe this method will help with the deep understanding of the intrinsic regulatory mechanism of C. glutamicum during bioengineering and will promote the process of building cell factories for synthetic biology.


Asunto(s)
Corynebacterium glutamicum , Proteoma , Proteoma/análisis , Corynebacterium glutamicum/metabolismo , Proteómica/métodos , Péptidos/análisis
12.
Adv Mater ; 35(16): e2209833, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36780277

RESUMEN

Solid state potassium (K) metal batteries are intriguing in grid-scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor K/solid electrolyte (SE) interfacial contact and limited capacity caused by the low K self-diffusion coefficient, dendrite growth, and intrinsically low melting point/soft features of metallic K. Herein, a fused-modeling strategy using potassiophilic carbon allotropes molted with K is demonstrated that can enhance the electrochemical performance/stability of the system via promoting K diffusion kinetics (2.37 × 10-8 cm2 s-1 ), creating a low interfacial resistance (≈1.3 Ω cm2 ), suppressing dendrite growth, and maintaining mechanical/thermal stability at 200 °C. A homogeneous/stable K stripping/plating is consequently implemented with a high current density of 2.8 mA cm-2 (at 25 °C) and a record-high areal capacity of 11.86 mAh cm-2 (at 0.2 mA cm-2 ). The enhanced K diffusion kinetics contribute to sustaining intimate interfacial contact, stabilizing the stripping/plating at high current densities. Full cells coupling ultrathin K-C composite anodes (≈50 µm) with Prussian blue cathodes and ß/ß″-Al2 O3 SEs deliver a high energy density of 389 Wh kg-1 with a retention of 94.4% after 150 cycles and fantastic performances at -20 to 120 °C.

13.
Biotechnol Biofuels Bioprod ; 16(1): 31, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829220

RESUMEN

BACKGROUND: 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS: In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS: An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.

14.
Elife ; 122023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598134

RESUMEN

A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.


Asunto(s)
Oído Interno , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Transcriptoma , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas Internas , Mamíferos/genética
16.
Materials (Basel) ; 17(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203866

RESUMEN

Wide-band laser cladding technology has emerged as a solution to the limitations of traditional cladding techniques, which are small single-path dimensions and low processing efficiency. The existing wide-band cladding technology presents challenges related to the high precision required for the laser-powder coupling and the significant powder-divergence phenomenon. Based on the inside-beam powder-feeding technology, a wide-band powder-feeding nozzle was designed using the multi-channel powder flow shaping method. The size of the powder spot obtained at the processing location can reach 40 mm × 3 mm. A computational fluid dynamics analysis using the FLUENT software was conducted to investigate the impact of the nozzle's structural parameters on the powder distribution. It was determined that the optimal configuration was achieved when the powder-feeding channel was 8, and the transverse and longitudinal dimensions for the collimating gas outlet were 0.5 mm and 1 mm, respectively. Among the process parameters, an increase in the carrier gas flow rate was found to effectively enhance the stability of powder transportation. However, the powder feed rate had minimal impact on the powder concentration distribution, and the collimating gas flow rate appeared to have a minimal effect on the divergence angle of the powder stream. Wide-band laser cladding experiments were conducted using the designed powder-feeding nozzle, and a single-path cladding with a width of 39.96 mm was finally obtained.

17.
Appl Microbiol Biotechnol ; 106(24): 8169-8181, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36401644

RESUMEN

Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.


Asunto(s)
Synechococcus , Synechococcus/genética
18.
Front Neurosci ; 16: 982850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263363

RESUMEN

Cochleas are the basis for biology to process and recognize speech information, emulating which with electronic devices helps us construct high-efficient intelligent voice systems. Memristor provides novel physics for performing neuromorphic engineering beyond complementary metal-oxide-semiconductor technology. This work presents an artificial cochlea based on the shallen-key filter model configured with memristors, in which one filter emulates one channel. We first fabricate a memristor with the TiN/HfOx/TaOx/TiN structure to implement such a cochlea and demonstrate the non-volatile multilevel states through electrical operations. Then, we build the shallen-key filter circuit and experimentally demonstrate the frequency-selection function of cochlea's five channels, whose central frequency is determined by the memristor's resistance. To further demonstrate the feasibility of the cochlea for system applications, we use it to extract the speech signal features and then combine it with a convolutional neural network to recognize the Free Spoken Digit Dataset. The recognition accuracy reaches 92% with 64 channels, compatible with the traditional 64 Fourier transform transformation points of mel-frequency cepstral coefficients method with 95% recognition accuracy. This work provides a novel strategy for building cochleas, which has a great potential to conduct configurable, high-parallel, and high-efficient auditory systems for neuromorphic robots.

19.
Environ Res ; 215(Pt 2): 114393, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150440

RESUMEN

In northern China, central heating, as an important source of urban particulate matter (UPM), causes more than half of the air pollution during the heating season and has significant spatial-temporal heterogeneity. Owing to the limitations of stationary air monitoring networks, few studies distinguish between heating/non-heating seasons and few have been conducted in urban areas. However, fixed monitoring cannot accurately capture the dynamic exposure of residents to UPM, and there is a lack of comprehensive evaluation of the factors affecting UPM. Therefore, this study used wearable Sniffer 4D equipment to monitor the concentrations of UPM (PM1, PM2.5, and PM10) in selected typical areas of Shenyang City from March 2019 to February 2020. A random forest model was combined with land use and point-of-interest data to analyze the contributions and marginal effects of multiple influences on UPM, in both heating and non-heating seasons. The results showed that in the eastern part of the study area, UPM showed completely opposite spatial distribution characteristics during the two seasons. The concentrations of UPM were higher during the heating season than during the non-heating season. The results indicated that temperature and humidity were important factors in diffusing UPM. The production and operation of boilers were important for the production of UPM. In two-dimensional landscape pattern indices, the percentage of forest and Shannon diversity index were the first and second most important factors, respectively. The three-dimensional pattern of buildings had important effects on the transport and diffusion of UPM (landscape height range >100, floor area ratio >1.3, and landscape volume density >5). Wearable devices could monitor the real situation of residents' exposure to UPM and quantify the factors influencing the spatial-temporal distribution of UPM in an ecological sense. These results provide a scientific basis for urban planning and for health risk reduction for residents.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dispositivos Electrónicos Vestibles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Estaciones del Año
20.
Adv Colloid Interface Sci ; 308: 102758, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037672

RESUMEN

As one of the most important functional organic macromolecules of life, proteins not only participate in the cell metabolism and gene regulation, they also earnestly protect the body's immunity system, leading to a powerful biological shield and homeostasis. Advances in nanomaterials are boosting the significant progress in various applications, including the sensing and examination of proteins in trace amount. Nanocellulose-oriented protein sensing is at the forefront of this revolution. The inherent feature of high biocompatibility, low cytotoxicity, high specific area, good durability and marketability endow nanocellulose with great superiority in protein sensing. Here, we highlight the recent progress of protein sensing using nanocellulose as the biosensor in trace amount. Besides, various kinds of construction strategies for nanocelluloses-based biosensors are discussed in detail, to enhance the agility and accuracy of clinical/medical diagnostics. Finally, several challenges in the approbatory identification of new approaches for the marketization of biomedical sensing that need further expedition in the future are highlighted.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...