Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Front Med (Lausanne) ; 11: 1406737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919935

RESUMEN

Background: Chlamydia abortus pneumonia is very rare in normal people. At present, there is a lack of clinical data on the clinical characteristics and diagnosis and treatment experience of patients with this type of infection. Our team had recently treated 7 cases of these patients. This study aims to comprehensively summarize and analyze the clinical characteristics and treatment methods of Chlamydia abortus pneumonia, and to provide clinical evidence for the diagnosis and treatment of Chlamydia abortus pneumonia. Methods: Clinical data were retrospectively collected from patients diagnosed with Chlamydia abortus pneumonia through metagenomic next-generation sequencing (mNGS) at the Department of Pulmonary and Critical Care Medicine, Meizhou People's Hospital. Results: Seven patients with Chlamydia abortus pneumonia reported a history of poultry exposure, experiencing fever alongside respiratory or digestive symptoms. Marked elevation of blood inflammation markers, accompanied by hypoproteinemia and liver damage, was observed. Chest CT scans revealed pneumonia and pleural effusion. Chlamydia abortus was detected in blood or bronchoalveolar lavage fluid (BALF) through mNGS, often co-occurring with Chlamydia psittaci or other bacteria infections. Notably, Doxycycline demonstrated efficacy in treating Chlamydia abortus. Conclusion: Chlamydia abortus infection is a zoonotic disease, particularly among individuals with a history of poultry exposure, and mNGS emerges as a reliable diagnostic tool for its detection. Chlamydia abortus infection manifests with systemic and lung inflammation, effectively addressed through Doxycycline therapy.

2.
ACS Sens ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908004

RESUMEN

Infection with drug-resistant bacteria poses a significant threat to human health. Judicious use of antibiotics could reduce the likelihood of bacterial resistance, which can be evaluated through antibiotic susceptibility testing (AST). This paper focuses on the application of a needle-like nanocapillary tip filled with chitosan (CS)/polyethylene pyrrolidone (PVP) hydrogel based on its specific pH-sensitive properties. The gel-filled nanocapillary has the potential to be used for electrical pH detection with a sensitivity of 3.06 nA/pH and a linear range from 7.3 to 4.3. Such sensitivity for pH measurement could be extended for monitoring of bacterial (such as Escherichia coli and Streptococcus salivarius) growth because of the relationship between pH and bacterial growth. Bacterial growth curves obtained using the hydrogel-filled nanocapillary showed good agreement with the OD600 method. Moreover, this device could be applied for rapid AST for tetracycline and norfloxacin on E. coli with minimum inhibitory concentrations of 2 and 0.125 µg/mL, respectively. This study expands the application of the hydrogel-based nanocapillary for bacterial research by monitoring changes in pH values.

3.
J Ethnopharmacol ; 333: 118396, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823658

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY: This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS: Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS: P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 µg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS: This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.

4.
Chem Commun (Camb) ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888388

RESUMEN

Metal selenides have garnered significant attention as promising anode materials for sodium-ion batteries, thanks to their high theoretical capacity, excellent conductivity, and natural abundance. However, their potential is hampered by disappointing capacity retention and unsatisfactory lifespan, primarily attributed to volume expansion and unwanted structural collapse resulting from the insertion and extraction of relatively large Na+ ions during the charge and discharge processes. This feature article provides a brief overview of our endeavors to address the challenges associated with metal selenide-based anode materials, aiming to achieve high-performance electrode materials for sodium-ion batteries. Our strategy encompasses nanostructure design, materials composite engineering, heteroatoms doping, and topography and interface engineering. Additionally, future research directions are also outlined.

5.
Cell Death Differ ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867004

RESUMEN

Cancer cells rely on metabolic reprogramming to sustain the prodigious energetic requirements for rapid growth and proliferation. Glutamine metabolism is frequently dysregulated in cancers and is being exploited as a potential therapeutic target. Using CRISPR/Cas9 interference (CRISPRi) screening, we identified TARBP1 (TAR (HIV-1) RNA Binding Protein 1) as a critical regulator involved in glutamine reliance of cancer cell. Consistent with this discovery, TARBP1 amplification and overexpression are frequently observed in various cancers. Knockout of TARBP1 significantly suppresses cell proliferation, colony formation and xenograft tumor growth. Mechanistically, TARBP1 selectively methylates and stabilizes a small subset of tRNAs, which promotes efficient protein synthesis of glutamine transporter-ASCT2 (also known as SLC1A5) and glutamine import to fuel the growth of cancer cell. Moreover, we found that the gene expression of TARBP1 and ASCT2 are upregulated in combination in clinical cohorts and their upregulation is associated with unfavorable prognosis of HCC (hepatocellular carcinoma). Taken together, this study reveals the unexpected role of TARBP1 in coordinating the tRNA availability and glutamine uptake during HCC progression and provides a potential target for tumor therapy.

6.
Environ Sci Technol ; 58(23): 10357-10367, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38728016

RESUMEN

The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdOx nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdOx nanoparticles, creating an Ir4f-O-Pdcus microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdOx and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir4f-O-Pdcus, reducing the energy barrier for C-H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr0.1/S-1 showed outstanding low-temperature activity for methane combustion (T50 = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr0.1/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/Al2O3 catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.


Asunto(s)
Iridio , Metano , Nanopartículas , Oxidación-Reducción , Metano/química , Iridio/química , Catálisis , Nanopartículas/química , Zeolitas/química , Paladio/química
7.
Adv Sci (Weinh) ; : e2400692, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783578

RESUMEN

Primate-specific DAZ (deleted in azoospermia) has evolved in the azoospermia factor c (AZFc) locus on the Y chromosome. Loss of DAZ is associated with azoospermia in patients with deletion of the AZFc region (AZFc_del). However, the molecular mechanisms of DAZ in spermatogenesis remain uncertain. In this study, the molecular mechanism of DAZ is identified, which is unknown since it is identified 40 years ago because of the lack of a suitable model. Using clinical samples and cell models, it is shown that DAZ plays an important role in spermatogenesis and that loss of DAZ is associated with defective proliferation of c-KIT-positive spermatogonia in patients with AZFc_del. Mechanistically, it is shown that knockdown of DAZ significantly downregulated global translation and subsequently decreased cell proliferation. Furthermore, DAZ interacted with PABPC1 via the DAZ repeat domain to regulate global translation. DAZ targeted mRNAs that are involved in cell proliferation and cell cycle phase transition. These findings indicate that DAZ is a master translational regulator and essential for the maintenance of spermatogonia. Loss of DAZ may result in defective proliferation of c-KIT-positive spermatogonia and spermatogenic failure.

8.
Front Plant Sci ; 15: 1333089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601301

RESUMEN

Timely and accurate estimation of cotton seedling emergence rate is of great significance to cotton production. This study explored the feasibility of drone-based remote sensing in monitoring cotton seedling emergence. The visible and multispectral images of cotton seedlings with 2 - 4 leaves in 30 plots were synchronously obtained by drones. The acquired images included cotton seedlings, bare soil, mulching films, and PE drip tapes. After constructing 17 visible VIs and 14 multispectral VIs, three strategies were used to separate cotton seedlings from the images: (1) Otsu's thresholding was performed on each vegetation index (VI); (2) Key VIs were extracted based on results of (1), and the Otsu-intersection method and three machine learning methods were used to classify cotton seedlings, bare soil, mulching films, and PE drip tapes in the images; (3) Machine learning models were constructed using all VIs and validated. Finally, the models constructed based on two modeling strategies [Otsu-intersection (OI) and machine learning (Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)] showed a higher accuracy. Therefore, these models were selected to estimate cotton seedling emergence rate, and the estimates were compared with the manually measured emergence rate. The results showed that multispectral VIs, especially NDVI, RVI, SAVI, EVI2, OSAVI, and MCARI, had higher crop seedling extraction accuracy than visible VIs. After fusing all VIs or key VIs extracted based on Otsu's thresholding, the binary image purity was greatly improved. Among the fusion methods, the Key VIs-OI and All VIs-KNN methods yielded less noises and small errors, with a RMSE (root mean squared error) as low as 2.69% and a MAE (mean absolute error) as low as 2.15%. Therefore, fusing multiple VIs can increase crop image segmentation accuracy. This study provides a new method for rapidly monitoring crop seedling emergence rate in the field, which is of great significance for the development of modern agriculture.

9.
PLoS One ; 19(4): e0300696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603679

RESUMEN

The primary treatment method for eradicating Helicobacter pylori (H. pylori) infection involves the use of antibiotic-based therapies. Due to the growing antibiotic resistance of H. pylori, there has been a surge of interest in exploring alternative therapies. Cetylpyridinium chloride (CPC) is a water-soluble and nonvolatile quaternary ammonium compound with exceptional broad-spectrum antibacterial properties. To date, there is no documented or described specific antibacterial action of CPC against H. pylori. Therefore, this study aimed to explore the in vitro activity of CPC against H. pylori and its potential antibacterial mechanism. CPC exhibited significant in vitro activity against H. pylori, with MICs ranging from 0.16 to 0.62 µg/mL and MBCs ranging from 0.31 to 1.24 µg/mL. CPC could result in morphological and physiological modifications in H. pylori, leading to the suppression of virulence and adherence genes expression, including flaA, flaB, babB, alpA, alpB, ureE, and ureF, and inhibition of urease activity. CPC has demonstrated in vitro activity against H. pylori by inhibiting its growth, inducing damage to the bacterial structure, reducing virulence and adherence factors expression, and inhibiting urease activity.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Cetilpiridinio/farmacología , Ureasa/genética , Infecciones por Helicobacter/microbiología , Antibacterianos/farmacología
10.
ACS Appl Mater Interfaces ; 16(15): 18833-18842, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574180

RESUMEN

Sodium-ion batteries (SIBs) offer several benefits, including cost-efficiency and fast-charging characteristics, positioning them as attractive substitutes for lithium-ion batteries in energy storage applications. However, the inferior capacity and cycling stability of electrodes in SIBs necessitate further enhancement due to sluggish reaction kinetics. In this respect, the utilization of heterostructures, which can provide an inherent electric field and abundant active sites on the surface, has emerged as a promising strategy for augmenting the cycling stability and rate features of the electrodes. This work delves into the utilization of V1.13Se2/V2O3 heterostructure materials as anodes, initially fabricated via a simplified one-step solid-state sintering technique. The high pseudocapacitance and low characteristic relaxation time constant give the V1.13Se2/V2O3 heterostructure impressive properties, such as a high capacity of 328.5 mAh g-1 even after 1500 cycles at a high current density of 2 A g-1 and rate capability of 278.9 mAh g-1 at 5 A g-1. Moreover, the assembled sodium-ion full battery delivers a capacity of 118.5 mAh g-1 after 1000 cycles at 1 A g-1. These findings provide novel insight and guidance for the rapid synthesis of heterojunction materials and the advancement of SIBs.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38616703

RESUMEN

Na3V2(PO4)2F3 (NVPF) has been regarded as a favorable cathode for sodium-ion batteries (SIBs) due to its high voltage and stable structure. However, the limited electronic conductivity restricts its rate performance. NVPF@reduced graphene oxide (rGO) was synthesized by a facile microwave-assisted hydrothermal approach with subsequent calcination to shorten the hydrothermal time. NVPF nanocuboids with sizes of 50-150 nm distributed on rGO can be obtained, delivering excellent electrochemical performance such as a longevity life (a high capacity retention of 85.6% after 7000 cycles at 10 C) and distinguished rate capability (116 mAh g-1 at 50 C with a short discharging/charging time of 1.2 min). The full battery with a Cu2Se anode represents a capacity of 116 mAh g-1 at 0.2 A g-1. The introduction of rGO can augment the electronic conductivity and advance the Na+ diffusion speed, boosting the cycling and rate capability. Besides, the small lattice change (3.3%) and high structural reversibility during the phase transition process between Na3V2(PO4)2F3 and NaV2(PO4)2F3 testified by in situ X-ray diffraction are also advantageous for Na storage behavior. This work furnishes a simple method to synthesize polyanionic cathodes with ultrahigh rate and ultralong lifespan for fast-charging SIBs.

12.
JAMA Netw Open ; 7(3): e243098, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38526493

RESUMEN

Importance: Influenza vaccination rates remain low among primary school students and vary by school in Beijing, China. Theory-informed, multifaceted strategies are needed to improve influenza vaccination uptake. Objective: To evaluate the effectiveness of multifaceted strategies in improving influenza vaccination uptake among primary school students. Design, Setting, and Participants: This cluster randomized trial was conducted from September 2022 to May 2023 across primary schools in Beijing, China. Schools were allocated randomly in a 1:1 ratio to multifaceted strategies or usual practice. Schools were deemed eligible if the vaccination rates in the 2019 to 2020 season fell at or below the district-wide average for primary schools. Eligible participants included students in grades 2 and 3 with no medical contraindications for influenza vaccination. Intervention: The multifaceted strategies intervention involved system-level planning and coordination (eg, developing an implementation blueprint, building social norms, and enhancing supervision), school-level training and educating school implementers (eg, conducting a 1-hour training and developing educational materials), and individual-level educating and reminding students and parents (eg, conducting educational activities and sending 4 reminders about vaccination). Main Outcomes and Measures: The primary outcomes were influenza vaccination uptake at school reported by school clinicians as well as overall vaccine uptake either at school or outside of school as reported by parents at 3 months. Generalized linear mixed models were used for analysis. Results: A total of 20 schools were randomized. One intervention school and 2 control schools did not administer vaccination on school grounds due to COVID-19, resulting in a total of 17 schools (9 intervention and 8 control). There was a total of 1691 students aged 7 to 8 years (890 male [52.6%]; 801 female [47.4%]) including 915 in the intervention group and 776 in the control group. Of all participants, 848 (50.1%) were in grade 2, and 1209 (71.5%) were vaccinated in the 2021 to 2022 season. Participants in the intervention and control groups shared similar characteristics. At follow-up, of the 915 students in the intervention group, 679 (74.5%) received a vaccination at school, and of the 776 students in the control group, 556 (71.7%) received a vaccination at school. The overall vaccination rates were 76.0% (695 of 915 students) for the intervention group and 71.3% (553 of 776 students) for the control group. Compared with the control group, there was significant improvement of vaccination uptake at school (odds ratio, 1.40; 95% CI, 1.06-1.85; P = .02) and overall uptake (odds ratio, 1.49; 95% CI, 1.12-1.99; P = .01) for the intervention group. Conclusions and Relevance: In this study, multifaceted strategies showed modest effectiveness in improving influenza vaccination uptake among primary school students, which provides a basis for the implementation of school-located vaccination programs of other vaccines in China, and in other countries with comparable programs. Trial registration: Chinese Clinical Trial Registry: ChiCTR2200062449.


Asunto(s)
Gripe Humana , Niño , Femenino , Humanos , Masculino , Pueblo Asiatico , China , Gripe Humana/prevención & control , Instituciones Académicas , Estudiantes , Vacunación
13.
PeerJ ; 12: e17063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435983

RESUMEN

Background: Cancer-related anemia (CRA) is a functional iron deficient anemia, and the early diagnosis will improve the prognosis of the patients. This prospective study aimed to investigate the utility of mean reticulocyte volume (MRV) in the early diagnosis of CRA. Methods: A total of 284 first-diagnosed cancer patients were enrolled, and the subjects were assigned anemia and non-anemia groups by hemoglobin (Hb) concentrations. The mature RBC and reticulocyte indices were detected with BC-7500 blood analyzer, and the MRV, reticulocyte hemoglobin (RHE) content, and reticulocyte production index (RPI) were obtained. ROC curves were constructed in identifying anemia diagnosed by the combination of RHE and RPI. An adjusted multivariate analyse and quartiles were used to assess the associations of MRV with early CRA diagnosed by combining RBC indices (MCV, MCH and MCHC), respectively. Results: No statistical differences were observed in MCV, RHE and MRV levels between anemia and non-anemia subjects (p > 0.05). MRV exhibited a complete or high correlation with the RHE levels (r = 1.000, p < 0.001), or MCV, MCH, and MCHC in anemia patients (R: 0.575-0.820, p < 0.001). ROC curves analyse indicated a highest area under curve of 0.829 (95% CI [0.762-0.895]) and 0.884 (95% CI [0.831-0.936]) for MRV in identifying anemia in male and female patients, respectively (p < 0.001). When the optimal cutoff values of MRV were set at 100.95 fl in males and 98.35 fl in females, the sensitivity and specificity were 1.00 and 0.68, and 1.00 and 0.73, respectively. The regression analyse showed that, when being as a categorical variable, MRV showed an odds ratio of 19.111 (95% CI [6.985-52.288]; p < 0.001) for the incidence of CRA. The incidence of overall anemia demonstrated a more significant decrease trend along with the increase of MRV quartiles (p-trend < 0.001). Conclusion: This study revealed that the MRV can be used as a convenient and sensitive index in early diagnosis of cancer-related anemia, and decreased MRV level may be the powerful predictor of overt anemia in cancer patients.


Asunto(s)
Anemia , Neoplasias , Humanos , Femenino , Masculino , Reticulocitos , Detección Precoz del Cáncer , Estudios Prospectivos , Anemia/diagnóstico , Hemoglobinas , Neoplasias/complicaciones
14.
Chem Sci ; 15(11): 4135-4139, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487247

RESUMEN

Na2Fe2(SO4)3 (NFS), as a promising cathode for sodium-ion batteries, is still plagued by its poor intrinsic conductivity. In general, hybridization with carbon materials is an effective strategy to improve the sodium storage performance of NFS. However, the role of carbon materials in the electrochemical performance of NFS cathode materials has not been thoroughly investigated. Herein, the effect of carbon materials was revealed by employing various conductive carbon materials as carbon sources. Among these, the NFS coated with Ketjen Black (NFS@KB) shows the largest specific surface area, which is beneficial for electrolyte penetration and rapid ionic/electronic migration, leading to improved electrochemical performance. Therefore, NFS@KB shows a long cycle life (74.6 mA h g-1 after 1000 cycles), superior rate performance (61.5 mA h g-1 at a 5.0 A g-1), and good temperature tolerance (-10 °C to 60 °C). Besides, the practicality of the NFS@KB cathode was further demonstrated by assembling a NFS@KB//hard carbon full cell. Therefore, this research indicates that a suitable carbon material for the NFS cathode can greatly activate the sodium storage performance.

15.
Neuropsychiatr Dis Treat ; 20: 459-467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463459

RESUMEN

Objective: To evaluate the efficacy and safety of lacosamide (LCM) monotherapy in the treatment of self-limited epilepsy with centrotemporal spikes (SeLECTS). Methods: In this study, 89 children with SeLECTS who were treated with LCM monotherapy in the Children's Hospital Affiliated to Soochow University from June 2019 to June 2021 were included. Clinical seizures and spike wave index (SWI) on video EEG during slow-wave sleep were evaluated before and after treatment. The role of LCM monotherapy in improving SWI, controlling clinical seizures and improving cognition was analyzed, and corresponding adverse reactions were documented. Results: There were 52 males and 37 females in this group, with an average age of 7.6 ± 2.1 years. The total effective rate was 93.83% and at 18 months of treatment, the cumulative control rate was 85.19%, the retention rate was 91.01% and the effective rate in terms of EEG spike index was 72.92%, all of which showed a high rate; there was no statistically significant difference in intelligence quotient before and after treatment (P > 0.05). In addition, it was found in the study that the earlier the age of onset, the less obvious the improvement in SWI after LCM treatment; the lower the baseline seizure frequency, the more significant the improvement in SWI after LCM treatment. Conclusion: LCM monotherapy had curative effect and adverse reactions for SeLECTS, with no negative impact on cognition. These significant findings indicate that LCM is likely to become a widely prescribed ASM for the treatment of SeLECTS. Meanwhile, the onset age and baseline seizure frequency had certain value in judging prognosis and predicting curative effect.

16.
Chem Sci ; 15(13): 4833-4838, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550702

RESUMEN

Sodium metal batteries have attracted increasing interest recently, but suffer from severe dendrite growth caused by uneven Na plating/stripping behavior, which may result in the piercing of the membrane, with short circuiting and even cause explosions. Herein, a conductive and sodiophilic Ag coating layer is introduced to regulate Na deposition behaviors for highly reversible sodium metal batteries. Ag coated Zn foil with enhanced sodiophilicity, rapid Na+ transfer kinetics and superior electronic conductivity guarantee the homogenized Na+ ion and electric field distribution. This enables remarkably low overpotentials and uniform Na plating/stripping behavior with ultrahigh Coulombic efficiency of 99.9% during 500 cycles. As expected, the enhanced electrochemical performance of the anode-less battery and anode-free battery coupled with Prussian blue is achieved with the help of Ag coating. This work emphasizes the role of the conductive and sodiophilic coating layer in regulating the Na deposition behaviors for highly reversible sodium metal batteries.

17.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517038

RESUMEN

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

18.
Phytomedicine ; 126: 155447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394732

RESUMEN

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Asunto(s)
Acetofenonas , Aterosclerosis , MicroARNs , Osteoporosis , Humanos , Animales , Ratones , Anciano , Células Espumosas , MicroARNs/genética , MicroARNs/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Apolipoproteínas E/genética
19.
Molecules ; 29(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202844

RESUMEN

Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.


Asunto(s)
Acetofenonas , Aterosclerosis , Sirtuinas , Humanos , Sirtuina 1 , Músculo Liso Vascular , Proteína p53 Supresora de Tumor , Aterosclerosis/tratamiento farmacológico , Inflamación , Transducción de Señal
20.
Adv Mater ; 36(7): e2305135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37590909

RESUMEN

Sodium-ion batteries (SIBs) are a viable alternative to meet the requirements of future large-scale energy storage systems due to the uniform distribution and abundant sodium resources. Among the various cathode materials for SIBs, phosphate-based polyanionic compounds exhibit excellent sodium-storage properties, such as high operation voltage, remarkable structural stability, and superior safety. However, their undesirable electronic conductivities and specific capacities limit their application in large-scale energy storage systems. Herein, the development history and recent progress of phosphate-based polyanionic cathodes are first overviewed. Subsequently, the effective modification strategies of phosphate-based polyanionic cathodes are summarized toward high-performance SIBs, including surface coating, morphological control, ion doping, and electrolyte optimization. Besides, the electrochemical performance, cost, and industrialization analysis of phosphate-based polyanionic cathodes for SIBs are discussed for accelerating commercialization development. Finally, the future directions of phosphate-based polyanionic cathodes are comprehensively concluded. It is believed that this review can provide instructive insight into developing practical phosphate-based polyanionic cathodes for SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...