Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822656

RESUMEN

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Asunto(s)
Cambio Climático , Floraciones de Algas Nocivas , Salinidad , Fotosíntesis , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Carbono/metabolismo , Carbono/análisis
2.
Protist ; 175(1): 126006, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118390

RESUMEN

Algicidal bacteria exhibit promising potential against harmful algal blooms (HABs); however, their application has been limited due to their limited algicidal activity. This study demonstrates the enhanced algicidal activity of Alteromonas sp. FDHY-CJ bacteria against harmful Skeletonema costatum using a 5 L fermenter. Utilizing this refined framework increased the OD600 value and algal cell mortality by 6.50 and 2.88 times, respectively, compared to non-optimized culture cultivated in a flask using marine broth 2216E medium. The mechanism of action involves significant inhibition of algal photosynthetic efficiency with concurrent degradation of photosynthetic pigments. Relative to the non-optimized group, the optimized bacterial treatment led to a significant increase in H2O2 and MDA (malondialdehyde) by 19.54 and 4.22-fold, respectively, and resulted in membrane damage. The culture optimization procedure yielded effectual algicidal substances capable of considerably reducing the severity of S. costatum HABs through cell membrane disruption.


Asunto(s)
Alteromonas , Diatomeas , Fermentación , Peróxido de Hidrógeno , Floraciones de Algas Nocivas , Fotosíntesis , Medios de Cultivo
3.
Biology (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998046

RESUMEN

The role of microorganisms in effectively terminating harmful algal blooms (HABs) is crucial for maintaining environmental stability. Recent studies have placed increased emphasis on bio-agents capable of inhibiting HABs. The bacterium Pseudoalteromonas sp. strain FDHY-MZ2 has exhibited impressive algicidal abilities against Karenia mikimotoi, a notorious global HAB-forming species. To augment this capability, cultures were progressively scaled from shake flask conditions to small-scale (5 L) and pilot-scale (50 L) fermentation. By employing a specifically tailored culture medium (2216E basal medium with 1.5% soluble starch and 0.5% peptone), under precise conditions (66 h, 20 °C, 450 rpm, 30 L/min ventilation, 3% seeding, and constant starch flow), a notable increase in algicidal bacterial biomass was observed; the bacterial dosage required to entirely wipe out K. mikimotoi within a day decreased from 1% to 0.025%. Compared to an unoptimized shake flask group, the optimized fermentation culture caused significant reductions in algal chlorophyll and protein levels (21.85% and 78.3%, respectively). Co-culturing induced increases in algal malondialdehyde and H2O2 by 5.98 and 5.38 times, respectively, leading to further disruption of algal photosynthesis. This study underscores the unexplored potential of systematically utilized microbial agents in mitigating HABs, providing a pathway for their wider application.

4.
Microbiol Spectr ; 10(3): e0042922, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35616372

RESUMEN

The toxic dinoflagellate Karenia mikimotoi is a harmful algal bloom-forming species in coastal areas around the world. It produces ichthyotoxins and hemolytic toxins, with deleterious effects on marine ecosystems. In this study, the bacterium Pseudoalteromonas sp. FDHY-MZ2, with high algicidal efficiency against K. mikimotoi, was isolated from a bloom event. Based on the results, it completely lysed K. mikimotoi cells within 24 h 0.5% (vol/vol), with the algicidal activity of the supernatant of the bacterium culture. Algal cell wall fragmentation occurred, leading to cell death. There was a marked decline in various photochemical traits. When treated with the supernatant, cellulase, pheophorbide a oxygenase (PAO) and cyclin B genes were significantly increased, suggesting induced cell wall deterioration, chloroplast degradation and cell cycle regulation of K. mikimotoi cells. In addition, the expression levels of reactive oxygen species (ROS) scavenging gene was significantly inhibited, indicating that the ROS removal system was damaged. The bacterial culture was dried to obtain the spray-dried powder, which showed algicidal activity rates of 92.2 and 100% against a laboratory K. mikimotoi culture and a field microcosm of Karlodinium sp. bloom within 24 h with the addition of 0.04% mass fraction powder. Our results demonstrate that FDHY-MZ2 is a suitable strain for K. mikimotoi and Karlodinium sp. blooms management. In addition, this study provides a new strategy for the anthropogenic control of harmful algal bloom-forming species in situ. IMPORTANCEK. mikimotoi is a noxious algal bloom-forming species that cause damaging of the aquaculture industry and great financial losses. Bacterium with algicidal activity is an ideal agency to inhibit the growth of harmful algae. In this approach application, the bacterium with high algicidal activity is required and the final management material is ideal for easy-to-use. The algicidal characteristics are also needed to understand the effects of the bacterium for managing strategy exploration. In this study, we isolated a novel algicidal bacterium with extremely high lysis efficiency for K. mikimotoi. The algicidal characteristics of the bacterium as well as the chemical and molecular response of K. mikimotoi with the strain challenge were examined. Finally, the algicidal powder was explored for application. The results demonstrate that FDHY-MZ2 is suitable for K. mikimotoi and Karlodinium sp. blooms controlling, and this study provides a new strategy for algicidal bacterium application.


Asunto(s)
Dinoflagelados , Bacterias , Dinoflagelados/genética , Dinoflagelados/metabolismo , Ecosistema , Floraciones de Algas Nocivas , Polvos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Harmful Algae ; 103: 101977, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980427

RESUMEN

The availability of ambient N nutrient is often correlated with the occurrences of harmful algal bloom formed by certain dinoflagellates, making it important to understand how these species might be responding to such conditions. Here, transcriptome sequencing of Karenia mikimotoi was conducted to understand the underlying molecular mechanisms by which this dinoflagellate copes with nitrogen (N) deficiency. Transcriptomic analysis revealed 8802 unigenes (3.56%) that were differentially expressed with ≥ 2-fold change. Under N-depleted conditions, genes involved in glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle as well as lipid accumulation were significantly upregulated. The elevated expression of enzymes used in protein degradation and turnover suggests possible metabolic reconfiguration towards accelerated N recycling. Moreover, a significant increase in urea transporter was observed, indicating increased assimilation of organic nitrogen resources as an alternative in N-depleted cultures of K. mikimotoi. The down-regulated glutamate synthase genes were also identified under N deficiency, suggesting suppression of primary amino acid synthesis to save N resource. Taken together, results of this study show enhanced multiple N resource acquisition and reuse of multiple N resources constitute a comprehensive strategy to cope with N deficiency in a dinoflagellate.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Perfilación de la Expresión Génica , Floraciones de Algas Nocivas , Nitrógeno , Transcriptoma
6.
Sci Total Environ ; 763: 143013, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203560

RESUMEN

Harmful algal blooms formed by certain dinoflagellate species often occur when environmental nitrogen nutrients (N) are limited. However, the molecular mechanism by which dinoflagellates adapt to low N environments is poorly understood. In this study, we characterized the transcriptomic responses of Prorocentrum shikokuense to N deficiency, along with its physiological impact. Under N deficiency, P. shikokuense cultures exhibited growth inhibition, a reduction in cell size, and decreases in cellular chlorophyll a and nitrogen contents but an increase in carbon content. Accordingly, gene expression profiles indicated that carbon fixation and catabolism and fatty acid metabolism were enhanced. Transporter genes of nitrate/nitrite, ammonium, urea, and amino acids were significantly upregulated, indicating that P. shikokuense cells invest to enhance the uptake of available dissolved N. Notably, upregulated genes included those involved in endocytosis and phagosomes, evidence that P. shikokuense is a mixotrophic organism that activates phagotrophy to overcome N deficiency. Additionally, vacuolar amino acid transporters, the urea cycle, and urea hydrolysis genes were upregulated, indicating N recycling within the cells under N deficiency. Our study indicates that P. shikokuense copes with N deficiency by economizing nitrogen use and adopting multiple strategies to maximize N acquisition and reuse while maintaining carbon fixation. The remarkable low N adaptability may confer competitive advantages to P. shikokuense for forming harmful blooms in DIN-limited environments.


Asunto(s)
Dinoflagelados , Clorofila A , Dinoflagelados/genética , Perfilación de la Expresión Génica , Floraciones de Algas Nocivas , Nitrógeno , Transcriptoma
7.
Bioresour Bioprocess ; 8(1): 82, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38650235

RESUMEN

Co-production of multiple compounds is an efficient approach to enhance the economic feasibility of microalgae-based metabolites production. In this study, Chlorella sorokiniana FZU60 was cultivated under different bioprocess strategies to enhance the co-production of lutein and protein. Results showed that both lutein and protein content (7.72 and 538.06 mg/g, respectively) were highest at the onset of nitrogen deficiency under batch cultivation. Semi-batch III strategy, with 75% microalgal culture replacement by fresh medium, obtained similar content, productivity, and yield of lutein and protein as batch cultivation, demonstrating that it can be used for stable and continuous production. Fed-batch II strategy, feeding with 1/3 modified BG11 medium, achieved super-high lutein and protein yield (28.81 and 1592.77 mg/L, respectively), thus can be used for high-output production. Besides, two-stage strategy, combining light intensity shift and semi-batch cultivation, gained extremely high lutein and protein productivity (15.31 and 1080.41 mg/L/day, respectively), thereby is a good option for high-efficiency production. Moreover, the fed-batch II and two-stage strategy achieved high-quality lutein and protein, thus are promising for the co-production of lutein and protein in C. sorokiniana FZU60 for commercial application.

8.
Mar Drugs ; 18(9)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32948074

RESUMEN

Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.


Asunto(s)
Productos Biológicos/metabolismo , Biotecnología , Microalgas/metabolismo , Productos Biológicos/economía , Productos Biológicos/farmacología , Biomasa , Biotecnología/economía , Análisis Costo-Beneficio , Metabolismo Energético
9.
Mar Environ Res ; 162: 105114, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32892151

RESUMEN

Ocean warming and acidification caused by global climate change interferes with the shell growth of mollusks. In abalone Haliotis discus hannai, the microstructural changes in the shell under stress are unclear, and the effect of thermal stress on biomineralization is unknown. The lack of gene information has also hampered the study of abalone biomineralization mechanisms. In this study, the microstructure of reconstructed shell in H. discus hannai was observed to determine the effects of thermal and acidification stress on shell growth. Three nacre protein genes, Hdh-AP7, Hdh-AP24, and Hdh-perlustrin, were characterized, and their expression pattern during shell repair was measured under thermal and acidification stress and compared with those of two known biomineralization-related genes, Hdh-AP-1 and Hdh-defensin. The stress resulted in aragonite plates with corroded or irregular microstructures. The gene expression of two nacre proteins (Hdh-AP7 and Hdh-AP24), which directly induce crystal formation, were more sensitive to thermal stress than to acidification, but the expression of the regulatory nacre protein (Hdh-perlustrin) and the two known genes (Hdh-AP-1 and Hdh-defensin), which are also related to immunity, showed an interlinked, complex pattern change. We concluded that high temperature and acidification damages the shell microstructure by disturbing the expression pattern of biomineralization-related genes.


Asunto(s)
Gastrópodos , Animales , Carbonato de Calcio , Gastrópodos/genética , Concentración de Iones de Hidrógeno , Moluscos , Temperatura
10.
Bioresour Technol ; 314: 123767, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32650265

RESUMEN

Chlorella sorokiniana FZU60, a lutein-enriching microalga, was cultivated in 50 L column photobioreactor to evaluate its potential for lutein production. Initial cell concentration, phosphate concentration and aeration rate were optimized, and results showed that optimal conditions of these three parameters were 0.10 g/L, 0.06 g/L and 0.02 vvm (2.5% CO2), respectively. In addition, a novel two-stage strategy was successfully developed, in which algae were firstly cultivated under fed-batch mixotrophic condition to achieve high biomass concentration, and then shifted to photoautotrophic condition for enhancing lutein accumulation. Moreover, dissolved oxygen was found to be an efficient indicator of acetate depletion in fed-batch stage. The obtained lutein content, production and productivity reached 9.51 mg/g, 33.55 mg/L and 4.67 mg/L/d, respectively, which were greater than those reported in other pilot-scale studies. This proposed strategy provided a cost-effective approach for high-efficient microalgae-based lutein production at pilot-scale, indicating great potential for commercial production.


Asunto(s)
Chlorella , Microalgas , Biomasa , Luteína , Fotobiorreactores
11.
Sci Total Environ ; 699: 134323, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31522044

RESUMEN

Harmful algal blooms (HABs) have increased as a result of global climate and environmental changes, exerting increasing impacts on the aquatic ecosystem, coastal economy, and human health. Despite great research efforts, our understanding on the drivers of HABs is still limited in part because HAB species' physiology is difficult to probe in situ. Here, we used molecular ecological analyses to characterize a dinoflagellate bloom at Xiamen Harbor, China. Prorocentrum donghaiense was identified as the culprit, which nutrient bioassays showed were not nutrient-limited. Metatranscriptome profiling revealed that P. donghaiense highly expressed genes related to N- and P-nutrient uptake, phagotrophy, energy metabolism (photosynthesis, oxidative phophorylation, and rhodopsin) and carbohydrate metabolism (glycolysis/gluconeogenesis, TCA cycle and pentose phosphate) during the bloom. Many genes in P. donghaiense were up-regulated at night, including phagotrophy and environmental communication genes, and showed active expression in mitosis. Eight microbial defense genes were up-regulated in the bloom compared with previously analyzed laboratory cultures. Furthermore, 76 P. donghaiense microRNA were identified from the bloom, and their target genes exhibited marked differences in amino acid metabolism between the bloom and cultures and the potential of up-regulated antibiotic and cell communication capabilities. These findings, consistent with and complementary to recent reports, reveal major metabolic processes in P. donghaiense potentially important for bloom formation and provide a gene repertoire for developing bloom markers in future research.


Asunto(s)
Dinoflagelados/fisiología , Monitoreo del Ambiente , Redes y Vías Metabólicas/genética , Ecosistema , Floraciones de Algas Nocivas , MicroARNs
12.
Sci Total Environ ; 711: 134551, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812434

RESUMEN

Ecological floating beds can rapidly remove nutrients (nitrogen and phosphorus) from eutrophic water, but we still know little about whether this process can simultaneously recover microbial eukaryotic communities. To fill this gap, planktonic microbial eukaryotic communities were investigated using 18S rRNA high-throughput gene sequencing during nutrient removal by floating beds of Canna indica L. We found that nutrient concentrations were high in both the control and treatment groups during period 1 (days 0-5) but rapidly decreased in the treatment group during period 2 (days 6-9) and period 3 (days 10-18). However, the microbial eukaryotic species richness and community compositions were similar between the control and treatment groups during periods 1 and 2 but showed small differences during period 3. The microbial eukaryotic co-occurrence networks between the control and treatment groups also showed similar degree centrality and interconnected eukaryotic members. We found that some abundant fungi species significantly responded to nutrient variations, but a large number of abundant ciliates were insensitive to nutrient removal. Our findings suggest that ecological floating beds can rapidly remove nutrients in eutrophic waters but that it is difficult to quickly and simultaneously improve microbial eukaryotic communities. This result reveals the critical influence of nutrient pollution on aquatic ecosystems and therefore on long-term and comprehensive aquatic habitat restoration, as aquatic macrophyte recoveries should be conducted after nutrient controls have been implemented.


Asunto(s)
Eucariontes , Eutrofización , Nitrógeno , Fósforo
13.
Artículo en Inglés | MEDLINE | ID: mdl-31707053

RESUMEN

Lustrin A is the first nacre protein with specific structure and amino acid residue content that was identified in abalone; since its identification, homologs have been found in several abalone species. In this study, we isolated and cloned the complete cDNA of Lustrin A from Haliotis discus hannai, which was named Hdh-Lustrin A. Hdh-Lustrin A has characteristic cysteine- and proline-rich domains, glycine- and serine-rich domains, and a whey acidic protein (WAP)-like C-terminus. The cysteine- and proline-rich domains showed internal similarity repeats that arrayed in gene coding region, and the phylogenetic tree of these repeats indicated that the similarity of structural repetitive unit components in different abalone species, reflecting their evolutionary distance. A tissue distribution analysis showed that the mRNA level of Hdh-Lustrin A has tissue-specific expression in mantle. Under lipopolysaccharide (LPS) challenge, Hdh-Lustrin A showed a significantly increase, while it showed a more complex pattern with two peaks in the process of shell regeneration. Moreover, acidification and warming raised the expression level of Hdh-Lustrin A in shell regeneration in two different manners; acidification raised the gene expression in quick response, in contrast the long run in warming treatment. Similar pattern also has been detected in immune reaction and the thermal treatments. These results suggest that the Hdh-Lustrin A is a nacre protein, which can be distinguished by its cysteine- and proline-rich domain. It involves in shell regeneration and innate immunity in abalone, and its expression pattern during shell regeneration can be disrupted by physicochemical properties of the environment.


Asunto(s)
Clonación Molecular , Proteínas de la Matriz Extracelular , Gastrópodos , Regulación de la Expresión Génica/fisiología , Animales , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Gastrópodos/genética , Gastrópodos/metabolismo
14.
Bioresour Technol ; 290: 121798, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31325840

RESUMEN

This study isolated and identified the lutein-enriching microalga Chlorella sorokiniana FZU60. Different types of media and concentrations of sodium acetate and nitrate were evaluated to improve mixotrophic growth and lutein production. Highest lutein content, production, and productivity were obtained in BG11 medium with 1 g/L acetate and 0.75 g/L nitrate. Additionally, pulse feeding with 1 g/L acetate every 48 h led to the alternation between mixotrophy and photoinduction, resulting in a lutein production of 33.6 mg/L. Most notably, excellent lutein content (9.57 mg/g) and productivity (11.57 mg/L/d) were obtained using a new multi-operation integrated strategy, and the achieved levels exceed those reported in most related studies. This work demonstrates the synergistic integration of simple and effective strategies for the enhancement of lutein production in the indigenous microalga C. sorokiniana FZU60 and provides new insight into the highly efficient microalgae-based lutein production.


Asunto(s)
Chlorella , Microalgas , Biomasa , Luteína
15.
Front Microbiol ; 10: 590, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967855

RESUMEN

Diatoms and dinoflagellates dominate coastal marine phytoplankton communities as major players of marine biogeochemical cycles and their seasonal succession often leads to harmful algal blooms (HABs). What regulates their respective dominances and the development of the HABs remains elusive. Here we conducted time-sequential metatranscriptomic profiling on a natural assemblage that evolved from diatom dominance to a dinoflagellate bloom to interrogate the underlying major metabolic and ecological drivers. Data reveals similarity between diatoms and dinoflagellates in exhibiting high capacities of energy production, nutrient acquisition, and stress protection in their respective dominance stages. The diatom-to-dinoflagellate succession coincided with an increase in turbidity and sharp declines in silicate and phosphate availability, concomitant with the transcriptomic shift from expression of silicate uptake and urea utilization genes in diatoms to that of genes for light harvesting, diversified phosphorus acquisition and autophagy-based internal nutrient recycling in dinoflagellates. Furthermore, the diatom-dominant community featured strong potential to carbohydrate metabolism and a strikingly high expression of trypsin potentially promoting frustule building. In contrast, the dinoflagellate bloom featured elevated expression of xanthorhodopsin, and antimicrobial defensin genes, indicating potential importance of energy harnessing and microbial defense in bloom development. This study sheds light on mechanisms potentially governing diatom- and dinoflagellate-dominance and regulating bloom development in the natural environment and raises new questions to be addressed in future studies.

16.
J Phycol ; 55(1): 37-46, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30468510

RESUMEN

Proliferating cell nuclear antigen (PCNA) plays critical roles in eukaryotic DNA replication and replication-associated processes. It is typically encoded by one or two gene copies (pcna) in eukaryotic genomes. Recently reported higher copy numbers of pcna in some dinoflagellates raised a question of how this gene has uniquely evolved in this phylum. Through real-time PCR quantification, we found a wide range of pcna copy number (2-287 copies) in 11 dinoflagellate species (n = 38), and a strong positive correlation between pcna copy number and genome size (log10 -log10 transformed). Intraspecific pcna diverged up to 21% and are dominated by nonsynonymous substitutions, indicating strong purifying selection pressure on and hence functional necessity of this gene. By surveying pcna copy numbers in eukaryotes, we observed a genome size threshold at 4 pg DNA, above which more than two pcna copies are found. To examine whether retrotransposition is a mechanism of pcna duplication, we measured the copy number of retroposed pcna, taking advantage of the 22-nt dinoflagellate-specific spliced leader (DinoSL) capping the 5' end of dinoflagellate nuclear-encoded mRNAs, which would exist in the upstream region of a retroposed gene copy. We found that retroposed pcna copy number increased with total pcna copy number and genome size. These results indicate co-evolution of dinoflagellate pcna copy number with genome size, and retroposition as a major mechanism of pcna duplication in dinoflagellates. Furthermore, we posit that the demand of faithful replication and maintenance of the large dinoflagellate genomes might have favored the preservation of the retroposed pcna as functional genes.


Asunto(s)
Dinoflagelados , Dosificación de Gen , Tamaño del Genoma , Antígeno Nuclear de Célula en Proliferación , ARN Lider Empalmado
17.
Harmful Algae ; 80: 72-79, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30502814

RESUMEN

The relationship between algicidal bacteria and harmful-algal-bloom-forming dinoflagellates is understudied and their action modes are largely uncharacterized. In this study, an algicidal bacterium (FDHY-03) was isolated from a bloom of Prorocentrum donghaiense and the characteristics of its action against P. donghaiense was investigated at physiological, molecular, biochemical and cytological levels. 16S rDNA sequence analysis placed this strain in the genus of Alteromonas in the subclass of γ-proteobacteria. Algicidal activity was detected in the bacterial filtrate, suggesting a secreted algicidal principle from this bacterium. Strain FDHY-03 showed algicidal activity on a broad range of HAB-forming species, but the greatest effect was found on P. donghaiense, which showed 91.7% mortality in 24 h of challenge. Scanning electron microscopic analysis indicated that the megacytic growth zone of P. donghaiense cells was the major target of the algicidal action of FDHY-03. When treated with FDHY-03 culture filtrate, P. donghaiense cell wall polysaccharides decreased steadily, suggesting that the algicidal activity occurred through the digestion of cell wall polysaccharides. To verify this proposition, the expression profile of beta-glucosidase gene in FDHY-03 cultures with or without P. donghaiense cell addition was investigated using reverse-transcription quantitative PCR. The gene expression level increased in the presence of P. donghaiense cells, indicative of beta-glucosidase induction by P. donghaiense and the enzyme's role in this dinoflagellate's demise. This study has isolated a new bacterial strain with a strong algicidal capability, documented its action mode and biochemical mechanism, providing a potential source of bacterial agent to control P. donghaiense blooms.


Asunto(s)
Alteromonas/aislamiento & purificación , Dinoflagelados/efectos de los fármacos , Herbicidas/farmacología , Alteromonas/química , Alteromonas/genética , Agentes de Control Biológico , Filogenia , Agua de Mar/microbiología
18.
Harmful Algae ; 75: 27-34, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29778223

RESUMEN

PCP and acpPC are the two major antennae proteins that bind pigments in peridinin-containing dinoflagellates. The relationship between antennae proteins and cellular pigments at molecular level is still poorly understood. Here we identified and characterized the two antennae protein genes in dinoflagellate Prorocentrum donghaiense under different light conditions. The mature PCP protein was 32 kDa, while acpPC was a polyprotein each of 19 kDa. Both genes showed higher expression under low light than under high light, suggesting their possible role in a low light adaptation mechanism. The two genes showed differential diel expression rhythm, with PCP being more highly expressed in the dark than in the light period and acpPC the other way around. HPLC analysis of cellular pigments indicated a diel change of chlorophyll c2, but invariability of other pigments. A stable peridinin: chlorophyll a pigment ratio was detected under different light intensities and over the diel cycle, although the diadinoxanthin:chlorophyll a ratio increased significantly with light intensity. The results suggest that 1) PCP and acpPC genes are functionally distinct, 2) PCP and acpPC can function under low light as an adaptive mechanism in P. donghaiense, 3). the ratios of diadinoxanthin:chlorophyll a and peridinin: chlorophyll a can potentially be used as an indicator of algal photophysiological status and a pigment signature respectively under different light conditions in P. donghaiense.


Asunto(s)
Proteínas Algáceas/genética , Relojes Circadianos , Dinoflagelados/fisiología , Complejos de Proteína Captadores de Luz/genética , Pigmentos Biológicos/química , Luz Solar , Proteínas Algáceas/metabolismo , Dinoflagelados/genética
19.
Bioresour Technol ; 257: 157-163, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29499497

RESUMEN

A complex of water-hyacinth derived pellets immobilized with Chlorella sp. was applied, for the first time, in the bioremediation of Cadmium (Cd). The Cd(II) removal efficiency of the complex was optimized by investigating several parameters, including the pellet materials, algal culture age, and light intensity. Results showed that the Cd(II) removal efficiency was positively related to the algal immobilization efficiency and the algal bioaccumulation capacity. Since higher surface hydrophilicity leads to higher immobilization efficiency, the water-hyacinth leaf biochar pellet (WLBp) was selected as the optimal carrier. A maximum Cd(II) removal efficiency of 92.45% was obtained by the complex of WLBp immobilized with algal cells in stationary growth phase and illuminated with a light intensity of 119 µmol m-2 s-1. Recovery tests on both microalgal cells and the WLBp demonstrated that the algal cells and the biochar pellet can be economically recycled and reused.


Asunto(s)
Biodegradación Ambiental , Cadmio , Eichhornia , Adsorción , Chlorella , Hyacinthus
20.
Environ Microbiol ; 20(3): 1078-1094, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29345115

RESUMEN

Despite numerous laboratory studies on physiologies of harmful algal bloom (HAB) species, physiologies of these algae during a natural bloom are understudied. Here, we investigated a bloom of the raphidophyte Heterosigma akashiwo in the East China Sea in 2014 using metabarcode (18S rDNA) and metatranscriptome sequencing. Based on 18S rDNA analyses, the phytoplankton community shifted from high diversity in the pre-bloom stage to H. akashiwo predominance during the bloom. A sharp decrease in ambient dissolved inorganic phosphate and strong up-regulation of phosphate and dissolved organic phosphorus (DOP) uptake genes, including the rarely documented (ppGpp)ase, in H. akashiwo from pre-bloom to bloom was indicative of rapid phosphorus uptake and efficient utilization of DOP that might be a driver of the H. akashiwo bloom. Furthermore, observed up-regulated expression of mixotrophy-related genes suggests potential contribution of mixotrophy to the bloom. Accelerating photosynthetic carbon fixation was also implied by the up-regulation of carbonic anhydrase genes during the bloom. Notably, we also observed a strong morning-to-afternoon shift in the expression of many genes. Our findings provide insights into metabolic processes likely important for H. akashiwo bloom formation, and suggest the need to consider timing of sampling in field studies on this alga.


Asunto(s)
Floraciones de Algas Nocivas/fisiología , Fitoplancton/clasificación , Estramenopilos/crecimiento & desarrollo , Estramenopilos/genética , China , Clorofila/análisis , ADN Ribosómico/genética , Dinoflagelados/crecimiento & desarrollo , Océanos y Mares , Fosfatos/metabolismo , Fósforo/metabolismo , Fotosíntesis/genética , Fitoplancton/genética , Pirofosfatasas/biosíntesis , Pirofosfatasas/genética , ARN Ribosómico 18S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...