RESUMEN
PURPOSE: To evaluate the effectiveness and safety of RLRL in delaying the progression of high myopes -6.00 D or worse. DESIGN: Multicenter, randomized, parallel-group, single-blind clinical trial. PARTICIPANTS: Two hundred and two high myopic children aged 7 to 12 years with cycloplegia spherical equivalent refraction (SE) ≤ -6.00 D, astigmatism less than 2.50 D, anisometropia of 1.50 D or less were enrolled from March 2022 to December 2022. Follow-up was completed in December 2023. METHODS: Eligible participants were randomly allocated to either the intervention (RLRLâ¯+â¯single vision spectacle [SVS]) or the control group (SVS). The RLRL treatment was administered every day for 3 minutes, twice a day, with an interval of at least 4 hours. MAIN OUTCOMES MEASURES: The primary outcome was the change in axial length (AL) at 12 months compared to baseline. Secondary outcomes included changes in SE, changes of choroidal thickness (ChT) and retinal thickness (RT) in different circle sectors. Outcomes were analyzed by means of intention-to-treat and per-protocol methods. RESULTS: After 12-month treatment, AL and SE changes were -0.11 ± 0.25 mm and 0.18 ± 0.63 D for RLRL group and 0.32 ± 0.09 mm and -0.80 ± 0.42 D for control group. Axial shortening > 0.05 mm was observed to 59% in the RLRL and 0% in the control group at 12 months. ChT and RT from a single center were analyzed. In the RLRL group, ChT were thickened in all sectors at 12 months. RT was increased in parafoveal and perifoveal circles. In the control group, all sectors of ChT and only perifoveal RT were significantly thinner at 12 months. The multivariate linear regression model revealed significant correlations between changes in ChT central foveal circle and RT perifoveal circle at 1 month and AL changes at 12 months. No fundus structure changes, afterimage exceeding 6 minutes nor best corrected visual acuity decreased reported. CONCLUSIONS: RLRL could effectively shorten the AL and inhibit the progression of myopia in high myopic patients -6.00 D or worse. AL shortening is sustained over 12 months of treatment. These observed changes appeared to be associated with increases in ChT and RT.
RESUMEN
Both elevated atmospheric CO2 concentration ([CO2]) and increased temperature exert notable influences on wheat (Triticum aestivum L.) growth and productivity when examined individually. Nevertheless, limited research comprehensively investigates the combined effects of both factors. Winter wheat was grown in environment-controlled chambers under two concentrations of CO2 (ambient CO2 concentration and ambient CO2 concentration plus 200 µmol mol-1) and two levels of temperature (ambient temperature and ambient temperature plus 2°C). The phenology, photosynthesis, carbohydrate and nitrogen metabolism, yield and quality responses of wheat were investigated. Elevated [CO2] did not counteract warming-induced shortening of wheat phenological period but prolonged grain filling. Even though photosynthetic adaptation occurred during the reproductive growth period, elevated [CO2] still significantly enhanced carbohydrate accumulation under warming, particularly at the grain filling stage, thereby increasing yield by 20.1% compared with the ambient control. However, elevated [CO2] inhibited nitrogen assimilation at the grain filling stage under increased temperature by downregulating the expression levels of TaNR, TaNIR, TaGS1 and TaGOGAT and reducing glutamine synthetase activity, which directly led to a significant decrease of 19.4% in grain protein content relative to the ambient control. These findings suggest that elevated [CO2] will likely increase yield but decrease grain nutritional quality for wheat under future global warming scenarios.
RESUMEN
BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiologíaRESUMEN
Human endogenous retroviruses (HERVs) are emerging as critical elements in host genomic regulation. Aberrant HERV transcription has been implicated in developmental and tissue-specific aging and pathological processes. In this study, we presented a comprehensive locus-specific characterization of the HERV expression landscape in esophageal squamous cell carcinoma (ESCC). We demonstrated the transcriptional diversity among patients and identified 12 clinically relevant HERVs in the SCH cohort, which were experimentally validated by Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) in the CAMS cohort. ESCC patients were stratified into three HERV-based subtypes (HERVhigh, HERVmedian and HERVlow) with distinct clinical and biological characteristics. The HERVhigh subtype was associated with worse survival, increased CD4+ T cells infiltration and decreased metabolic activity, whereas the HERVlow subtype was characterized by abundant CD8+ T cells, increased metabolic activity, and better survival. The HERV-based tumor subtyping was further robustly validated by RNA sequencing and RT-qPCR in two additional external cohorts. Our findings demonstrate the clinical significance of HERVs for tumor subtyping and prognosis, provide insights into the functional role of HERVs and a valuable resource for developing novel biomarkers and therapeutic targets in ESCC.
RESUMEN
Background: There has been a gradual increase in the proportion of preterm birth in China during the past several decades. Maternal malnutrition is a significant determinant for preterm birth. Nevertheless, comprehensive studies investigating serum mineral levels during pregnancy associated with preterm birth remain scarce. This study aims to assess the associations between maternal serum mineral levels and the risk of preterm birth. Methods: This retrospective cohort study of 18,048 pregnant women used data from a tertiary hospital in China from January 2016 to December 2022. Demographic data and serum mineral concentrations in the second and third trimesters of mothers were collected from the hospital information system. Analysis was performed using restricted cubic splines and logistic regression models. Results: The proportion of preterm birth in this study was 6.01%. Phosphorus [P for overall = 0.005; P for nonlinear = 0.490; OR (95%CI) = 1.11 (1.04, 1.18)] and chlorine [P for overall = 0.002; P for nonlinear = 0.058; OR (95%CI) = 1.11 (1.03, 1.19)] showed a significant positive correlation with preterm birth in a linear fashion. Furthermore, serum levels of potassium (P for nonlinear <0.001), sodium (P for nonlinear = 0.004), and magnesium (P for nonlinear <0.001) exhibited non-linear relationships with the risk of preterm birth. Conclusion: Serum levels of some minerals during pregnancy were associated with the risk of preterm birth among pregnant women. In addition to commonly recognized micronutrients such as folic acid, iron, and vitamin D, healthcare providers should also pay attention to the levels of these minerals during pregnancy.
RESUMEN
Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0-20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26-11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies.
RESUMEN
Read-through chimeric RNAs are being recognized as a means to expand the functional transcriptome and contribute to cancer tumorigenesis when mis-regulated. However, current software tools often fail to predict them. We have developed RTCpredictor, utilizing a fast ripgrep tool to search for all possible exon-exon combinations of parental gene pairs. We also added exonic variants allowing searches containing common SNPs. To our knowledge, it is the first read-through chimeric RNA specific prediction method that also provides breakpoint coordinates. Compared with 10 other popular tools, RTCpredictor achieved high sensitivity on a simulated and three real datasets. In addition, RTCpredictor has less memory requirements and faster execution time, making it ideal for applying on large datasets.
Asunto(s)
Análisis de Secuencia de ARN , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Humanos , ARN/genética , Biología Computacional/métodos , Exones , Algoritmos , Polimorfismo de Nucleótido SimpleRESUMEN
RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified UBA1-CDK16 , a female-specific chimeric transcript. Intriguingly, both parental genes, are expressed in males and females. Mechanistically, UBA1-CDK16 is produced by cis-splicing between the two adjacent X-linked genes, originating from the inactive X chromosome. A female-specific chromatin loop, formed between the junction sites, facilitates the alternative splicing of its readthrough precursor. This unique chimeric transcript exhibits evolutionary conservation, evolving to be female-specific from non-human primates to humans. Furthermore, our investigation reveals that UBA1-CDK16 is enriched in the myeloid lineage and plays a regulatory role in myeloid differentiation. Notably, female COVID-19 patients who tested negative for this chimeric transcript displayed higher counts of neutrophils, highlighting its potential role in disease pathogenesis. These findings support the notion that chimeric RNAs represent a new repertoire of transcripts that can be regulated independently from the parental genes, and a new class of RNA variance with potential implications in sexual dimorphism and immune responses.
RESUMEN
BACKGROUND: Abnormal bile acid metabolism leading to changes in placental function during pregnancy. To determine whether endoplasmic reticulum protein 29 (ERp29) can mediate the pregnancy effects of cholestasis by altering the level of trophoblast cell apoptosis. METHODS: ERp29 in serum of 66 intrahepatic cholestasis of pregnancy (ICP) pregnant women and 74 healthy were detected by ELISA. Subcutaneous injection of ethinyl estradiol (E2) was used to induce ICP in pregnant rats. Taurocholic acid (TCA) was used to simulate the ICP environment, and TGF-ß1 was added to induce the epithelial mesenchymal transformation (EMT) process. The scratch, migration, and invasion test were used to detect the EMT process. ERp29 overexpression/knockdown vector were constructed and transfected to verify the role of ERp29 in the EMT process. Downstream gene was obtained through RNA-seq. RESULTS: Compared with the healthy pregnant women, the expression levels of ERp29 in serum of ICP pregnancy women were significantly increased (P < 0.001). ERp29 in the placenta tissue of the ICP pregnant rats increased significantly, and the level of apoptosis increased. The placental tissues of the ICP had high expression of E-cadherin and low expression of N-cadherin, snail1, vimentin. After HTR-8/SVneo cells were induced by TCA, EMT was inhibited, while the ERp29 increased. Cell and animal experiments showed that, knockdown of ERp29 reduced the inhibition of EMT, the ICP progress was alleviated. Overexpression of FOS salvaged the inhibitory effects of ERp29 on cell EMT. DISCUSSION: The high level of ERp29 in placental trophoblast cells reduced FOS mRNA levels, inhibited the EMT process and aggravated the occurrence and development of ICP.
Asunto(s)
Colestasis Intrahepática , Complicaciones del Embarazo , Femenino , Embarazo , Humanos , Ratas , Animales , Placenta/metabolismo , Trofoblastos/metabolismo , Complicaciones del Embarazo/metabolismo , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Ácido Taurocólico/metabolismo , Ácido Taurocólico/farmacología , Apoptosis/fisiología , Transición Epitelial-Mesenquimal/fisiologíaRESUMEN
BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS: This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS: Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS: miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS: This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.
Asunto(s)
Colestasis Intrahepática , Exosomas , MicroARNs , Complicaciones del Embarazo , Femenino , Humanos , Embarazo , Proteínas 14-3-3/metabolismo , Apoptosis , Proliferación Celular , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Exosomas/genética , Luciferasas/metabolismo , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismoRESUMEN
Circular RNAs (circRNAs) are a family of endogenous RNAs that have become a focus of biological research in recent years. Emerging evidence has revealed that circRNAs exert biological functions by acting as transcriptional regulators, microRNA sponges, and binding partners with RNA-binding proteins. However, few studies have identified coding circRNAs, which may lead to a hidden repertoire of proteins. In this study, we unexpectedly discovered a protein-encoding circular RNA circCCDC7(15,16,17,18,19) while we were searching for prostate cancer related chimeric RNAs. circCCDC7(15,16,17,18,19) is derived from exon 19 back spliced to exon 15 of the CCDC7 gene. It is significantly downregulated in patients with high Gleason score. Prostate cancer patients with decreased circCCDC7(15,16,17,18,19) expression have a worse prognosis, while linear CCDC7 had no such association. Overexpressed circCCDC7(15,16,17,18,19) inhibited prostate cancer cell migration, invasion, and viability, supporting classification of circCCDC7(15,16,17,18,19) as a bona fide tumor suppressor gene. We provide evidence that its tumor suppressive activity is driven by the protein it encodes, and that circCCDC7(15,16,17,18,19) encodes a secretory protein. Consistently, conditioned media from circCCDC7(15,16,17,18,19) overexpressing cells has the same tumor suppressive activity. We further demonstrate that the tumor suppressive activity of circCCDC7(15,16,17,18,19) is at least partially mediated by FLRT3, whose expression also negatively correlates with Gleason score and clinical prognosis. In conclusion, circCCDC7(15,16,17,18,19) functions as a tumor suppressor in prostate cancer cells through the circCCDC7-180aa secretory protein it encodes, and is a promising therapeutic peptide for prostate cancer.
RESUMEN
The atmospheric [CO2] and the frequency and intensity of extreme weather events such as drought are increased, leading to uncertainty to soybean production. Elevated [CO2] (eCO2) partially mitigates the adverse effects of drought stress on crop growth and photosynthetic performance, but the mitigative mechanism is not well understood. In this study, soybean seedlings under drought stress simulated by PEG-6000 were grown in climate chambers with different [CO2] (400 µmol mol-1 and 700 µmol mol-1). The changes in anatomical structure, wax content, photosynthesis, and antioxidant enzyme were investigated by the analysis of physiology and transcriptome sequencing (RNA-seq). The results showed that eCO2 increased the thickness of mesophyll cells and decreased the thickness of epidermal cells accompanied by reduced stomatal conductance, thus reducing water loss in soybean grown under drought stress. Meanwhile, eCO2 up-regulated genes related to wax anabolism, thus producing more epidermal wax. Under drought stress, eCO2 increased net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and alerted the gene expressions in photosynthesis. The increased sucrose synthesis and decreased sucrose decomposition contributed to the progressive increase in the soluble saccharide contents under drought stress with or without eCO2. In addition, eCO2 increased the expressions of genes associated with peroxidase (POD) and proline (Pro), thus enhancing POD activity and Pro content and improving the drought resistance in soybean. Taken together, these findings deepen our understanding of the effects of eCO2 on alleviating drought stress in soybean and provide potential target genes for the genetic improvement of drought tolerance in soybean.
Asunto(s)
Dióxido de Carbono , Resistencia a la Sequía , Dióxido de Carbono/metabolismo , Glycine max/genética , Hojas de la Planta/fisiología , Fotosíntesis , Estrés Oxidativo , Sequías , Antioxidantes/metabolismo , Sacarosa/farmacologíaRESUMEN
The low detection sensitivity of lateral-flow immunochromatography assay (LFIA) based on spherical gold nanoparticle (AuNP) limits its wide applications. In the present study, AuNP dimers with strong plasma scattering and robust signal output were synthesized via the Ag ion soldering (AIS) strategy and used as labeled probes in LFIA to boost the sensitivity without any extra operation process and equipment. The established LFIA exhibited high sensitivity with a limit of detection (LOD) of 2.0 × 102 TCID50/mL for PEDV, which provides 50 times higher sensitivity than commercial LFIA based on spherical colloidal gold. In addition, the AuNP dimer-based LFIA showed strong specificity, good reproducibility, high stability, and good accordance to reverse transcription polymer chain reaction (RT-PCR) when detecting 109 clinical samples. Thus, the AuNP dimers is a promising probe for LFIA and the developed AuNP dimer-based LFIA is suitable for the rapid detection of PEDV in the field.
Asunto(s)
Nanopartículas del Metal , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Oro , Sensibilidad y Especificidad , Reproducibilidad de los Resultados , Enfermedades de los Porcinos/diagnóstico , Nanopartículas del Metal/química , Cromatografía de Afinidad , PolímerosRESUMEN
Background: Life satisfaction (LS) serves as a crucial indicator of social wellbeing and plays a significant role in formulating strategies aimed at enhancing health outcomes among the hearing-disabled population. This study aimed to examine the effect of anxiety, depression, and structural social capital on life satisfaction among people with hearing disabilities in Shanghai, China. Methods: A cross-sectional study was conducted in Shanghai, China. As of March 2022, 337 people with hearing disabilities were recruited from the Shanghai Disabled Persons' Federation. An online survey was conducted using a four-part questionnaire to collect data including demographic characteristics, the Hospital Anxiety and Depression Scale (HADS), the Social Capital Scale (SCS), and a single-item question to measure life satisfaction. One-sample t-tests, Pearson's correlation analysis, and hierarchical multiple regression analysis were performed. Results: Anxiety (ß = - 0.153) and depression (ß = - 0.242) were significant factors influencing life satisfaction among people with hearing disabilities. Structural social capital also played an influential role in life satisfaction, and people with hearing disabilities who lack social networks (ß = 0.125) and social support (ß = 0.121) reported significantly lower levels of life satisfaction. However, no significant relationship was found in this study between LS and other components of structural social capital, such as social participation. Conclusion: This study shows that paying attention to mental health is critical for people with hearing disabilities to achieve social wellbeing and promote LS improvement. At the same time, the government and society also need to focus on the structural social capital, provide various social service programs, enhance social support, and expand social networks, improving LS for people with hearing disabilities.
RESUMEN
Inhibin subunit beta A (INHBA) is a member of the transforming growth factor-beta (TGF-ß) superfamily that plays a fundamental role in various cancers. However, a systematic analysis of the exact role of INHBA in patients with gastric cancer (GC) has not yet been conducted. We evaluated the expression levels of INHBA and the correlation between INHBA and GC prognosis in GC. The relationship between INHBA expression, immune infiltration levels, and type markers of immune cells in GC was also explored. In addition, we studied INHBA mutations, promoter methylation, and functional enrichment analysis. Besides, high expression levels of INHBA in GC were significantly related to unfavorable prognosis. INHBA was negatively correlated with B cell infiltration, but positively correlated with macrophage and most anticancer immunity steps. INHBA expression was positively correlated with the type markers of CD8+ T cells, neutrophils, macrophages, and dendritic cells. INHBA has a weak significant methylation level change between tumor and normal tissues and mainly enriched in cancer-related signaling pathways. The present study implies that INHBA may serve as a potential biomarker for predicting the prognosis of patients with GC. INHBA is a promising predictor of immunotherapy response, with higher levels of INHBA indicating greater sensitivity.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Biomarcadores de Tumor/metabolismo , Pronóstico , Linfocitos B/metabolismoRESUMEN
Introduction: Coronary artery disease (CAD) is one of the most life-threatening cardiovascular emergencies with high mortality and morbidity. Increasing evidence has demonstrated that the degree of hypoxia is closely associated with the development and survival outcomes of CAD patients. However, the role of hypoxia in CAD has not been elucidated. Methods: Based on the GSE113079 microarray dataset and the hypoxia-associated gene collection, differential analysis, machine learning, and validation of the screened hub genes were carried out. Results: In this study, 54 differentially expressed hypoxia-related genes (DE-HRGs), and then 4 hub signature genes (ADM, PPFIA4, FAM162A, and TPBG) were identified based on microarray datasets GSE113079 which including of 93 CAD patients and 48 healthy controls and hypoxia-related gene set. Then, 4 hub genes were also validated in other three CAD related microarray datasets. Through GO and KEGG pathway enrichment analyses, we found three upregulated hub genes (ADM, PPFIA4, TPBG) were strongly correlated with differentially expressed metabolic genes and all the 4 hub genes were mainly enriched in many immune-related biological processes and pathways in CAD. Additionally, 10 immune cell types were found significantly different between the CAD and control groups, especially CD8 T cells, which were apparently essential in cardiovascular disease by immune cell infiltration analysis. Furthermore, we compared the expression of 4 hub genes in 15 cell subtypes in CAD coronary lesions and found that ADM, FAM162A and TPBG were all expressed at higher levels in endothelial cells by single-cell sequencing analysis. Discussion: The study identified four hypoxia genes associated with coronary heart disease. The findings provide more insights into the hypoxia landscape and, potentially, the therapeutic targets of CAD.
RESUMEN
Hepatocellular carcinoma (HCC) is the most common fatal cancer worldwide, patients with HCC have a high mortality rate and poor prognosis. PANoptosis is a novel discovery of programmed cell death associated with cancer development. However, the role of PANoptosis in HCC remains obscure. In this study, we enrolled 274 PANoptosis-related genes (PANRGs) and screened 8 genes to set up a prognostic model. A previous scoring system calculated PANscore was utilized to quantify the individual risk level of each HCC patient, and the reliability of the prognostic model has been validated in an external cohort. Nomogram constructed with PANscore and clinical characteristics were used to optimize individualized treatment for each patient. Single-cell analysis revealed a PANoptosis model associated with tumor immune cell infiltration, particularly natural killer (NK) cells. Further exploration of hub genes and assessment of the prognostic role of these 4 hub genes in HCC by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). In conclusion, we evaluated a PANoptosis-based prognostic model as a potential prognostic biomarker for HCC patients.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Reproducibilidad de los Resultados , Microambiente Tumoral/genética , Neoplasias Hepáticas/genética , Apoptosis , PronósticoRESUMEN
The frequency of drought will increase under further warming. The increase in atmospheric CO2 concentration, along with more frequent drought, will affect crop growth. We examined the changes of cell structure, photosynthetic physiology, antioxidant enzymes, osmotic regulatory substances, and yield of foxtail millet (Setaria ita-lica) leaves under different CO2 concentrations (ambient air CO2 concentration and ambient atmospheric CO2 concentration + 200 µmol·mol-1) and water treatment (soil moisture content maintained at 45%-55%, and 70%-80% of field capacity, representing mild drought and normal water condition, respectively). The results showed that elevated CO2 concentration increased the number of starch grains, the area of single starch grains, and the total area of starch grains in the chloroplast of millet mesophyll cells. Under mild drought condition, elevated CO2 concentration increased net photosynthetic rate of millet leaves at the booting stage by 37.9%, but did not affect water use efficiency at this stage. Elevated CO2 concentration increased net photosynthetic rate and water use efficiency of millet leaves under mild drought condition at the filling stage by 15.0% and 44.2%, respectively. Under mild drought condition, elevated CO2 concentration increased the content of peroxidase (POD) and soluble sugar in millet leaves at the booting stage by 39.3% and 8.0%, respectively, but decreased proline content by 31.5%. It increased the content of POD in millet leaves at the filling stage by 26.5% but decreased the content of MDA and proline by 37.2% and 39.3%, respectively. Under mild drought condition, elevated CO2 concentration significantly increased the number of grain spikes by 44.7% and yield by 52.3% in both years compared with normal water condition. The effect of elevated CO2 concentration on grain yield under mild drought conditions was higher than that under normal water condition. Under mild drought conditions, elevated CO2 concentration increased leaf thickness, vascular bundle sheath cross-sectional area, net photosynthetic rate, and water use efficiency of millet, improved the antioxidant oxidase activity, and changed the concentration of osmotic regulatory substances, alleviated the nega-tive effect of drought on foxtail millet, and finally increased the number of grains per ear and yield of foxtail millet. This study would provide a theoretical basis for millet production and sustainable agricultural development in arid areas under future climate change.
Asunto(s)
Setaria (Planta) , Setaria (Planta)/fisiología , Dióxido de Carbono , Antioxidantes , Sequías , Prolina , Almidón/farmacologíaRESUMEN
The feedback between nitrous oxide (N2O) emissions, straw management and future climate scenarios is not well understood, especially in wheat ecosystems. In this study, the changes in N2O emissions, soil properties, enzymes, and functional genes involved in N cycling were measured with straw return (incorporation and mulching) and straw removal, under elevated [CO2] (+200 µmol mol-1 above ambient [CO2]), elevated temperature (+2 °C above ambient temperature), and their combination. The net global warming potential (NGWP) and greenhouse gas intensity (GHGI) were evaluated in combination with greenhouse gas emissions, yield, and soil organic carbon (C) sequestration. Compared with the ambient condition, elevated [CO2] and elevated temperature suppressed N2O emission by 41 %-46 %. Straw return significantly increased N2O emission by 31 %-109 % through increasing soil C and N substrates and denitrifying genes abundance, compared with straw removal. In addition, the impact of straw return on N2O emission was greater than that of elevated [CO2] or temperature. Straw return generally reduced NGWP by 166.2-3353.3 kg CO2-eq ha-1 and GHGI by 0.4-1.1 kg CO2-eq kg-1 through increasing soil organic C sequestration by 0.1-1.1 t C ha-1 and grain yield by 280.8 kg ha-1-1595.4 kg ha-1. Straw return would stimulate N2O emissions from this wheat cropping system under future warmer, elevated [CO2] climates, but simultaneously increase grain yield and soil organic C sequestration to a greater extent. Overall, straw return is beneficial to climate change mitigation; in particular, straw incorporation would be more effective than straw mulching.