Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1295721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074090

RESUMEN

The role of a scientist is at first not so different from a philosopher. They both need to question common thinking and evaluate whether reality is not as we always thought. Based on this, we need to design hypotheses, experiments, and analyses to prove our alternative vision. Artificial Intelligence (AI) is rapidly moving from an "assistant" into a proper "colleague" for literature mining, data analysis and interpretation, and literally having (almost) real scientific conversations. However, being AI based on existing information, if we rely on it excessively will we still be able to question the status quo? In this article, we are particularly interested in discussing the future of proteomics and mass spectrometry with our new electronic collaborator. We leave to the reader the judgement whether the answers we received are satisfactory or superficial. What we were mostly interested in was laying down what we think are critical questions that the proteomics community should occasionally ask to itself. Proteomics has been around for more than 30 years, but it is still missing a few critical steps to fully address its promises as being the new genomics for clinical diagnostics and fundamental science, while becoming a user-friendly tool for every lab. Will we get there with the help of AI? And will these answers change in a short period, as AI continues to advance?

2.
Nature ; 624(7991): 442-450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993714

RESUMEN

The canonical (caspase-1) and noncanonical (comprising caspases 4, 5 and 11; hereafter, caspase-4/5/11) inflammasomes both cleave gasdermin D (GSDMD) to induce pyroptosis1,2. Whereas caspase-1 processes IL-1ß and IL-18 for maturation3-6, no cytokine target has been firmly established for lipopolysaccharide-activated caspase-4/5/117-9. Here we show that activated human caspase-4, but not mouse caspase-11, directly and efficiently processes IL-18 in vitro and during bacterial infections. Caspase-4 cleaves the same tetrapeptide site in pro-IL-18 as caspase-1. The crystal structure of the caspase-4-pro-IL-18 complex reveals a two-site (binary) substrate-recognition mechanism; the catalytic pocket engages the tetrapeptide, and a unique exosite that critically recognizes GSDMD10 similarly binds to a specific structure formed jointly by the propeptide and post-cleavage-site sequences in pro-IL-18. This binary recognition is also used by caspase-5 as well as caspase-1 to process pro-IL-18. In caspase-11, a structural deviation around the exosite underlies its inability to target pro-IL-18, which is restored by rationally designed mutations. The structure of pro-IL-18 features autoinhibitory interactions between the propeptide and the post-cleavage-site region, preventing recognition by the IL-18Rα receptor. Cleavage by caspase-1, -4 or -5 induces substantial conformational changes of IL-18 to generate two critical receptor-binding sites. Our study establishes IL-18 as a target of lipopolysaccharide-activated caspase-4/5. The finding is paradigm shifting in the understanding of noncanonical-inflammasome-mediated defences and also the function of IL-18 in immunity and disease.


Asunto(s)
Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Humanos , Inflamasomas/metabolismo , Interleucina-18 , Lipopolisacáridos/farmacología , Caspasas/metabolismo , Caspasa 1/metabolismo , Piroptosis
3.
Nature ; 599(7884): 290-295, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34671164

RESUMEN

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-negative bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochemical dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, respectively. The enzymatic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defence in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Caspasas Iniciadoras/metabolismo , Evasión Inmune , Piroptosis , Shigella flexneri/patogenicidad , Adenosina Difosfato/metabolismo , Animales , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Femenino , Inmunidad Humoral , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , NAD/metabolismo , Piroptosis/efectos de los fármacos , Vacunas contra la Shigella , Shigella flexneri/inmunología , Virulencia
4.
Sci Immunol ; 5(52)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008915

RESUMEN

Bacterial flagellin can elicit production of TLR5-mediated IL-22 and NLRC4-mediated IL-18 cytokines that act in concert to cure and prevent rotavirus (RV) infection. This study investigated the mechanism by which these cytokines act to impede RV. Although IL-18 and IL-22 induce each other's expression, we found that IL-18 and IL-22 both impeded RV independently of one another and did so by distinct mechanisms that involved activation of their cognate receptors in intestinal epithelial cells (IEC). IL-22 drove IEC proliferation and migration toward villus tips, which resulted in increased extrusion of highly differentiated IEC that serve as the site of RV replication. In contrast, IL-18 induced cell death of RV-infected IEC thus directly interrupting the RV replication cycle, resulting in spewing of incompetent virus into the intestinal lumen and causing a rapid drop in the number of RV-infected IEC. Together, these actions resulted in rapid and complete expulsion of RV, even in hosts with severely compromised immune systems. These results suggest that a cocktail of IL-18 and IL-22 might be a means of treating viral infections that preferentially target short-lived epithelial cells.


Asunto(s)
Anoicis/inmunología , Interleucina-18/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/patología , Infecciones por Rotavirus/inmunología , Animales , Movimiento Celular/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Humanos , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-18/uso terapéutico , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/uso terapéutico , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/virología , Masculino , Ratones , Ratones Noqueados , Rotavirus/inmunología , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/virología , Transducción de Señal/inmunología , Interleucina-22
5.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32299851

RESUMEN

Cytotoxic lymphocyte-mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte-killing mechanism, which may enhance antitumor immunity.


Asunto(s)
Granzimas/metabolismo , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis/inmunología , Linfocitos T Citotóxicos/enzimología , Animales , Granzimas/química , Células HEK293 , Humanos , Interferón gamma , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Dominios Proteicos , Proteolisis
6.
Cell ; 180(5): 941-955.e20, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109412

RESUMEN

The pyroptosis execution protein GSDMD is cleaved by inflammasome-activated caspase-1 and LPS-activated caspase-11/4/5. The cleavage unmasks the pore-forming domain from GSDMD-C-terminal domain. How the caspases recognize GSDMD and its connection with caspase activation are unknown. Here, we show site-specific caspase-4/11 autoprocessing, generating a p10 product, is required and sufficient for cleaving GSDMD and inducing pyroptosis. The p10-form autoprocessed caspase-4/11 binds the GSDMD-C domain with a high affinity. Structural comparison of autoprocessed and unprocessed capase-11 identifies a ß sheet induced by the autoprocessing. In caspase-4/11-GSDMD-C complex crystal structures, the ß sheet organizes a hydrophobic GSDMD-binding interface that is only possible for p10-form caspase-4/11. The binding promotes dimerization-mediated caspase activation, rendering a cleavage independently of the cleavage-site tetrapeptide sequence. Crystal structure of caspase-1-GSDMD-C complex shows a similar GSDMD-recognition mode. Our study reveals an unprecedented substrate-targeting mechanism for caspases. The hydrophobic interface suggests an additional space for developing inhibitors specific for pyroptotic caspases.


Asunto(s)
Inflamasomas/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a Fosfato/ultraestructura , Piroptosis/genética , Animales , Caspasa 1/química , Caspasa 1/genética , Caspasa 1/ultraestructura , Caspasas Iniciadoras/química , Caspasas Iniciadoras/genética , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/genética , Conformación Proteica en Lámina beta/genética , Dominios Proteicos/genética , Procesamiento Proteico-Postraduccional/genética , Proteolisis
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(5): 485-489, 2019 Oct 01.
Artículo en Chino | MEDLINE | ID: mdl-31721494

RESUMEN

OBJECTIVE: To explore the mechanism of smoking that promotes chronic periodontitis from the perspective of gingival microcirculation. METHODS: In experiment one, upper anterior teeth (n=102) from smokers with chronic periodontitis (Group A), nonsmokers with chronic periodontitis (Group B), and nonsmokers with healthy periodontal conditions (Group C) were selected to undergo gingival blood flow (GBF) through laser doppler flowmetry. In experiment two, the tissues obtained from gums during periodontal flap surgery were divided into smoking (Group A') and nonsmoking (Group B') groups, and the gingival tissue obtained from periodontal healthy nonsmokers treated with crown lengthening surgery or impacted wisdom tooth extraction served as the control group (Group C'). The microvessels density (MVD) of the gingival tissue from the three groups was determined in the tissue sections. SPSS 22.0 was used for statistical analysis. RESULTS: Compared with group C, GBF of all teeth increased in group B, and there were significant differences among 12, 21 and 23 teeth. MVD significantly differed between Group B' and C' (P<0.05), but they did not significantly differ between Group A' and B'. CONCLUSIONS: Periodontitis can increase GBF and MVD, but smoking does not cause significant changes. However, the mechanism by which smoking promotes the occurrence and development of chronic periodontitis by influencing gingival microcirculation has not been discussed in this research.


Asunto(s)
Periodontitis Crónica , Humanos , Microcirculación , Fumar
8.
Cell ; 178(3): 552-566.e20, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31327526

RESUMEN

Antibacterial autophagy (xenophagy) is an important host defense, but how it is initiated is unclear. Here, we performed a bacterial transposon screen and identified a T3SS effector SopF that potently blocked Salmonella autophagy. SopF was a general xenophagy inhibitor without affecting canonical autophagy. S. Typhimurium ΔsopF resembled S. flexneri ΔvirAΔicsB with the majority of intracellular bacteria targeted by autophagy, permitting a CRISPR screen that identified host V-ATPase as an essential factor. Upon bacteria-caused vacuolar damage, the V-ATPase recruited ATG16L1 onto bacteria-containing vacuole, which was blocked by SopF. Mammalian ATG16L1 bears a WD40 domain required for interacting with the V-ATPase. Inhibiting autophagy by SopF promoted S. Typhimurium proliferation in vivo. SopF targeted Gln124 of ATP6V0C in the V-ATPase for ADP-ribosylation. Mutation of Gln124 also blocked xenophagy, but not canonical autophagy. Thus, the discovery of SopF reveals the V-ATPase-ATG16L1 axis that critically mediates autophagic recognition of intracellular pathogen.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Bacterianas/genética , Macroautofagia , Salmonella/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factores de Virulencia/genética , ADP-Ribosilación , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Salmonella/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Factores de Virulencia/metabolismo
9.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31076358

RESUMEN

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Asunto(s)
Coagulación Sanguínea , Inflamasomas/metabolismo , Piroptosis , Trombosis/etiología , Trombosis/metabolismo , Animales , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Biomarcadores , Caspasas/metabolismo , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/mortalidad
10.
Nature ; 547(7661): 99-103, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459430

RESUMEN

Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 3/metabolismo , Piroptosis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Animales , Caspasa 1/metabolismo , Línea Celular Tumoral , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/metabolismo
11.
Cell Host Microbe ; 19(5): 664-74, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27133449

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/enzimología , Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Inflamasomas/metabolismo , Pirina/inmunología , Proteínas de Unión al GTP rho/inmunología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Infecciones por Burkholderia/metabolismo , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Caspasa 1/metabolismo , Línea Celular , Células HEK293 , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/enzimología , Neumonía/inmunología , Pirina/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
J Exp Med ; 213(5): 647-56, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27114610

RESUMEN

Biochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand. Furthermore, infections performed in the Naip-deficient macrophages have helped to define the major signal in Legionella pneumophila, Salmonella Typhimurium and Shigella flexneri that is detected by the NAIP/NLRC4 inflammasome. Using an engineered S. Typhimurium infection model, we demonstrate the critical role of NAIPs in clearing bacterial infection and protecting mice from bacterial virulence-induced lethality. These results provide definitive genetic evidence for the important physiological function of NAIPs in antibacterial defense and inflammatory damage-induced lethality in mice.


Asunto(s)
Células de la Médula Ósea/inmunología , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Factores de Virulencia/inmunología , Animales , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Inflamasomas/genética , Ratones , Ratones Noqueados , Proteína Inhibidora de la Apoptosis Neuronal/genética , Factores de Virulencia/genética
13.
Nature ; 526(7575): 660-5, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26375003

RESUMEN

Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1ß release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Inflamación/enzimología , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/deficiencia , Sistemas CRISPR-Cas , Caspasa 1/metabolismo , Línea Celular , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Necrosis , Proteínas de Neoplasias/química , Proteínas de Unión a Fosfato , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA