Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135331, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236964

RESUMEN

Low temperatures can seriously affect apple yield and can also cause chilling injury to apple fruit. γ-aminobutyric acid (GABA) plays an important role in improving plant stress resistance. Some studies have reported that GABA can improve cold resistance in plants, only through exogenous treatment; however, the molecular mechanism of its resistance to low temperature is still unknown. This result suggested that exogenous GABA treatment of both apple seedlings and fruit could improve the resistance of apple to low temperatures. MdGAD1, a key gene involved in GABA synthesis, was overexpressed in tomato plants and apple callus to improve their cold tolerance. Both yeast one-hybrid and luciferase assay showed that MdCBF3 could bind to the MdGAD1 promoter to activate its expression and promote GABA synthesis. These results revealed a molecular mechanism utilizing the MdCBF3-MdGAD1 regulatory module that can enhance cold resistance by increasing endogenous GABA synthesis in apple.

2.
Adv Sci (Weinh) ; : e2400930, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032167

RESUMEN

Soil alkalization is an adverse factor limiting plant growth and yield. As a signaling molecule and secondary metabolite, γ-aminobutyric acid (GABA) responds rapidly to alkaline stress and enhances the alkaline resistance of plants. However, the molecular mechanisms by which the GABA pathway adapts to alkaline stress remain unclear. In this study, a transcription factor, MdNAC104 is identified, from the transcriptome of the alkaline-stressed roots of apple, which effectively reduces GABA levels and negatively regulates alkaline resistance. Nevertheless, applying exogenous GABA compensates the negative regulatory mechanism of overexpressed MdNAC104 on alkaline resistance. Further research confirms that MdNAC104 repressed the GABA biosynthetic gene MdGAD1/3 and the GABA transporter gene MdALMT13 by binding to their promoters. Here, MdGAD1/3 actively regulates alkaline resistance by increasing GABA synthesis, while MdALMT13 promotes GABA accumulation and efflux in roots, resulting in an improved resistance to alkaline stress. This subsequent assays reveal that MdSINA2 interacts with MdNAC104 and positively regulates root GABA content and alkaline resistance by ubiquitinating and degrading MdNAC104 via the 26S proteasome pathway. Thus, the study reveals the regulation of alkaline resistance and GABA homeostasis via the MdSINA2-MdNAC104-MdGAD1/3/MdALMT13 module in apple. These findings provide novel insight into the molecular mechanisms of alkaline resistance in plants.

3.
Plant Physiol Biochem ; 206: 108306, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154298

RESUMEN

Soil salinization had become a global ecological problem, which restricts the plant growth, and the quantity and quality of fruits. As a signaling molecule, γ-Aminobutyric acid (GABA) mediates a series of physiological processes and stress responses. Our previous research showed that GABA could alleviate drought, low phosphorus, cadmium stresses in apples, but the further research about its physiological mechanisms under salt stress was even more needed. The present study showed that the inhibition of salt stress on plant growth might be effectively alleviated by the treatment of 0.5 mM GABA, and the osmotic balance and photosynthetic capacity of plants could be maintained. Exogenous GABA could effectively inhibit the enrichment of reactive oxygen species and the uptake of Na+, while maintaining ion homeostasis. The experiment results indicated GABA could markedly promote the expression amount of Na+ and K+ transport-related genes (e.g., HKT1, AKT1, NHX1, SOS1, SOS2, and SOS3) in apples under salt stress. Overexpression and interference (RNAi) of MdGAD1 in apple roots, which is a crucial enzyme in the GABA biosynthesis, affected the salt tolerance of plants. Transgenic apple plants with roots of overexpression MdGAD1 showed less relative electrolyte leakage and more expression level of related ion transport genes than CK group, but RNAi MdGAD1 led to the opposite results. These results indicated that GABA accumulation could effectively strengthen the resistance of apple plants to salt stress and alleviate the injury of apple seedlings resulted from salinity.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Tolerancia a la Sal/genética , Plantones/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Homeostasis , Iones/metabolismo , Ácido gamma-Aminobutírico/farmacología , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
Mol Plant Pathol ; 24(6): 588-601, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932866

RESUMEN

The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ-aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one-hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, ß-glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA.


Asunto(s)
Malus , Malus/microbiología , Phyllachorales/metabolismo , Antioxidantes/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aminoácidos/metabolismo
5.
Environ Pollut ; 300: 118867, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063536

RESUMEN

GABA, a four-carbon non-protein amino acid, plays an important role in animals and plants. We previously found GABA could alleviate alkali stress in apple seedlings. However, its physiological mechanism under heavy metal cadmium (Cd) stress need to be further studied. Thus, we explored its biological role in response to Cd stress. It was verified that 0.5 mM GABA could effectively alleviate Cd toxicity. Using NMT technique, we found that exogenous GABA could significantly reduce the net Cd2+ fluxes in apple roots, and Cd content was significantly lower than that in roots under Cd stress. Further analysis indicated exogenous GABA could significantly reduce the expression of genes related to the uptake and transport of Cd in apples under Cd stress. In addition, exogenous GABA could significantly increase the content of amino acids in apple roots under Cd stress. GAD is a key enzyme in GABA synthesis, we obtained transgenic apple roots of overexpression MdGAD1. Compared with the control, transgenic roots accumulated less Cd, maintained lower Cd uptake by roots, and lower expression of related transport genes. These results showed that GABA could effectively alleviate Cd toxicity in apple seedlings and provide a new perspective of GABA to alleviate Cd stress.


Asunto(s)
Cadmio , Malus , Cadmio/metabolismo , Cadmio/toxicidad , Malus/genética , Malus/metabolismo , Raíces de Plantas/metabolismo , Plantones , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
6.
PLoS One ; 9(11): e113198, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25419662

RESUMEN

Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.


Asunto(s)
Algoritmos , Cara/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Identificación Biométrica/métodos , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...