RESUMEN
Obesity is primarily caused by excessive intake as well as absorption of sugar and lipid. Postprandial surge in distention pressure and intestinal motility accelerates the absorption of nutrients. The response of intestinal epithelial cells to mechanical stimulation is not fully understood. Piezo1, a mechanosensitive ion channel, is widely expressed throughout the digestive tract. However, its function in intestinal nutrient absorption is not yet clear. In our study, excessive lipid deposition was observed in the duodenum of obese patients, while duodenal Piezo1-CaMKK2-AMPKα was decreased when compared to normal-weight individuals. Under high-fat diet condition, the Piezo1 iKO mice exhibited abnormally elevated sugar and lipid absorption as well as severe lipid deposition in the duodenum and liver. These phenotypes were mainly caused by the inhibition of duodenal CaMKK2-AMPKα and the upregulation of SGLT1 and DGAT2. In contrast, Yoda1, a Piezo1 agonist, was found to reduce intestinal lipid absorption in diet induced obese mice. Overexpression of Piezo1, stretch and Yoda1 inhibited lipid accumulation and the expression of DGAT2 and SGLT1, whereas knockdown of Piezo1 stimulated lipid accumulation and DGAT2 in Caco-2 cells. Our study reveals a previously unexplored mechanical regulation of nutrient absorption in intestinal epithelial cells, which may shed new light on the therapy of obesity.
RESUMEN
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) not only disrupt tumor angiogenesis but also have many unexpected side effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ("senomimetic") VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. By using a live cell sorting method to detect ß-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened IFN signaling and increased expression of IFN-stimulated genes (ISGs). These ISGs increase under the control of the STimulator of the INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host-tumor cell contact while tumors grown from SM+ cells were more sensitive to PDL1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side effects may help identify TKIs that uniquely "prime" tumors for enhanced sensitivity to PDL1-targeted agents.
RESUMEN
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
RESUMEN
In recent years, linearization technology for nonlinear devices has become a hot topic in many fields. In this study, a linear voltage divider based on metal oxide arresters was designed by combining linearization technology and electrical measurement technology to solve the objective problems of online voltage monitoring. These problems include high difficulty in equipment installation, low measurement accuracy, and poor economic benefits. Based on a summary of linearization theory, the sufficient and necessary conditions for the linearization of the voltage divider were deduced in detail. The relevant circuit simulations were conducted, along with voltage divider experiments under power frequency AC voltage, operating overvoltage, and lightning overvoltage. The results revealed that the voltage divider was able to realize linearized measurements and meet the relevant standards of online voltage monitoring. The measurement errors were concentrated in the transition region between the pre-breakdown region (small current region) and the breakdown region (nonlinear region) in the volt-ampere characteristic curve. The main influencing factor of errors was the consistency of the nonlinear characteristics of the high- and low-voltage arms of the voltage divider. The voltage divider designed in this study can be applied in many scenarios, such as power plants, substations, high-voltage electrical equipment manufacturing plants, and high-voltage laboratories.
RESUMEN
Amorphous oxide semiconductors (AOSs) with low off-currents and processing temperatures offer promising alternative materials for next-generation high-density memory devices. The complex vertical stacking process of memory devices significantly increases the probability of encountering internal contact issues. Conventional surface treatment methods developed for planar devices necessitate efficient approaches to eliminate contact issues at deep internal interfaces in the nanoscale complex structures of AOS devices. In this work, we report the pioneering use of palladium thin film as a high-efficiency active hydrogen transfer pathway from the outside to the internal contact interface via low-temperature postannealing in the H2 atmosphere, and the formation of highly conductive metallic interlayer effectively solves the contact issues at the deeply buried interfaces in devices. The application of this method reduced the contact resistance of Pd electrodes/amorphous indium-gallium-zinc oxide (a-IGZO) thin-film by 2 orders of magnitude, and thereby the mobility of thin-film transistor was increased from 3.2 cm2 V-1 s-1 to nearly 20 cm2 V-1 s-1, preserving an excellent bias stress stability. This technology has wide applicability for the solution of contact resistance issues in oxide semiconductor devices with complex architectures.
RESUMEN
Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside â mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6â´-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6â´-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.
Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos Herbarios Chinos/química , Ácido Betulínico , Saponinas/química , Ácidos Oléicos , Cromatografía Líquida de Alta Presión , Ziziphus/química , SemillasRESUMEN
The release of emerging contaminants (ECs) into aquatic environments poses a significant risk to global water security. Advanced oxidation processes (AOPs), while effective in removing ECs, are often resource and energy-intensive. Here, we introduce a novel catalyst, CoFe quantum dots embedded in graphene nanowires (CoFeQds@GN-Nws), synthesized through anaerobic polymerization. It uniquely features electron-rich and electron-poor micro-regions on its surface, enabling a self-purification mechanism in wastewater. This is achieved by harnessing the internal energy of wastewater, particularly the bonding energy of pollutants and dissolved oxygen (DO). It demonstrates exceptional efficiency in removing ECs at ambient temperature and pressure without the need for external oxidants, achieving a removal rate of nearly 100.0%. The catalyst's structure-activity relationship reveals that CoFe quantum dots facilitate an unbalanced electron distribution, forming these micro-regions. This leads to a continuous electron-donation effect, where pollutants are effectively cleaved or oxidized. Concurrently, DO is activated into superoxide anions (O2â¢-), synergistically aiding in pollutant removal. This approach reduces resource and energy demands typically associated with AOPs, marking a sustainable advancement in wastewater treatment technologies.
RESUMEN
Tightly integrating actuation, computation, and sensing in soft materials allows soft robots to respond autonomously to their environments. However, fusing these capabilities within a single soft module in an efficient, programmable, and compatible way is still a significant challenge. Here, we introduce a strategy for integrating actuation, computation, and sensing capabilities in soft origami. Unified and plug-and-play soft origami modules can be reconfigured into diverse morphologies with specific functions or reprogrammed into a variety of soft logic circuits, similar to LEGO bricks. We built an untethered autonomous soft turtle that is able to sense stimuli, store data, process information, and perform swimming movements. The function multiplexing and signal compatibility of the origami minimize the number of soft devices, thereby reducing the complexity and redundancy of soft robots. Moreover, this origami also exhibits strong damage resistance and high durability. We envision that this work will offer an effective way to readily create on-demand soft robots that can operate in unknown environments.
RESUMEN
Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) â 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.
RESUMEN
Six oligosaccharides were discovered and isolated for the first time from Ziziphi Spinosae Semen. On the basis of spectroscopic analysis, their structures were determined to be verbascose (1), verbascotetraose (2), stachyose (3), manninotriose (4), raffinose (5), and melibiose (6). The prebiotic effect of the oligosaccharide fraction was assayed by eight gut bacterial growth in vitro, revealing a significant increase in cell density, up to 4-fold, for Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus johnsonii. The impact of six oligosaccharides with different degrees of polymerization (DPs) and structures on the growth of Lactobacillus acidophilus was evaluated. As a result, stachyose and raffinose demonstrated superior support for bacterial growth compared to the other oligosaccharides. This study explored the structure-activity relationship of raffinose family oligosaccharides (RFOs) and showed that the more the monosaccharide type, the more supportive the gut bacteria growth when oligosaccharides have the same molecular weight.
Asunto(s)
Prebióticos , Semen , Rafinosa/química , Rafinosa/metabolismo , Semen/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , MelibiosaRESUMEN
Objective: This study aimed to investigate the relationship between hearing impairment, depressive symptoms, and social participation in older adults. Methods: The study used data from the China Health and Retirement Longitudinal Study (CHARLS) in 2013 and 2018, which included 3,980 samples. The analysis was conducted using cross-lagged structural equation modeling with SPSS 23.0 and Mplus 7.4. Results: The findings show that from 2013 to 2018, older people had significantly more hearing impairment and depressive symptoms and significantly less social participation. Hearing impairment was a significant negative predictor of social participation, and older adults with hearing impairment were less likely to participate in social activities. In addition, there may be a bidirectional relationship between hearing impairment and depressive symptoms, with both being positive predictors of each other. Finally, the study found that social participation played an important mediating role in the relationship between hearing impairment and depressive symptoms. Conclusion: The study's findings highlight the complex interplay between hearing impairment, social participation, and depressive symptoms in older adults. Therefore, it is important to intervene promptly when hearing impairment is detected in the elderly; pay attention to patient guidance and comfort for the elderly with hearing impairment, give them positive psychological support, encourage them to get out of the house and participate in more social activities to avoid depressive symptoms. The study's results may inform the development of targeted interventions to address the mental health needs of older adults with hearing impairment.
RESUMEN
Head and neck squamous cell carcinoma (HNSCC) is a leading cause of morbidity and mortality globally. Despite significant advances in well-established treatment techniques, prognosis for advanced-stage HNSCC remains poor. Recent, accumulating evidence supports a role for immunotherapy in HNSCC treatment. Radiation therapy (RT), a standard treatment option for HNSCC, has immunomodulatory and immunostimulatory effects that may enhance the efficacy of immunotherapy. In several cancer types, combining RT and immunotherapy has been shown to improve tumor response rates, increase survival, and reduce toxicity compared to traditional chemotherapy and radiation therapy. This review provides a timely overview of the current knowledge on the use of RT and immunotherapy for treating HNSCC. It highlights the potential advantages of combining these therapies, such as improved tumor response rates, increased survival, and reduced toxicity. The review also discusses the challenges that need to be addressed when redefining the standard of care in HNSCC, and proposes further research to optimize treatment combinations, minimize radiation-induced toxicity, and identify suitable patient populations for treatment.
RESUMEN
All-photonic synaptic devices with the merits of visible signals and high spatiotemporal resolution are promising to break the Von Neumann bottleneck. Although organic synapses outperform their inorganic counterpart for easy molecular modulation and lower energy consumption, the organic all-photonic artificial synapse has never been reported. Here, all-photonic synaptic characteristics were unprecedentedly observed in an organic semiconductor, (3,6-dimethyl-9H-carbazol-9-yl)(thiophen-2-yl) methanone (S2OC), with anti-Stokes photoluminescence. Impressively, the intensity of fluorescence from the higher excited state (S3) exhibited synaptic performance, which constantly increased with irradiation time through a channel composed of intersystem crossing, triplet-triplet annihilation, and energy transfer. More importantly, the relationship between the molecular structure and synaptic performance was established. Based on the synaptic photoplasticity property, noncontacted multilevel anticounterfeiting and imaging recognition were realized in all-photonic synapse arrays. This work provides a universal strategy for tuning the performances of organic synapses upon regulating the molecular structures, which paves the way for the application of organic semiconductors in artificial intelligence.
RESUMEN
With the continuous miniaturization and integration of the semiconductor industry, micro/nanoscale integrated photonics has received extensive attention as a key technology for optical communication, optical storage, and optical interconnection. Here, a two-in-one device is reported with both unidirectional blue light emission and UV photodetection functions based on single trapezoidal PIN GaN microwire. By constructing a Fabry-Perot resonator cavity structure, the end-emitting blue light-emitting diode with a low turn-on voltage (≈0.97 V) and high color purity (full width at half maximum ≈22 nm) is implemented. Furthermore, benefiting from the slow growth rate of the semipolar planes on both sides of the trapezoidal microwire and the high diffuse reflectivity of the patterned substrate, the trapezoidal microwire sides can be used as a high-performance UV photodetector. In self-driven mode, the device exhibits a large responsivity (0.218 A W-1 ), high external quantum efficiency (83.31%) and fast response speed (rise/decay time of 0.48/0.98 ms). Finally, the prepared two-in-one device is successfully integrated into ambient light UV monitoring and feedback system and tested. This work provides a novel strategy to combine luminescence with photodetection, demonstrating high potential for applications, such as on-chip photonic integration, energy-saving communication and ambient light monitoring and feedback system.
RESUMEN
The rhizoma of Polygonatum odoratum (PO) is used to treat yin injuries of the lung and stomach in traditional Chinese medicine. The chemical constituents of this herb are steroidal saponins, homoisoflavanones, and alkaloids. Xiangyuzhu (XPO) and Guanyuzhu (GPO) are available in the market as two specifications of the commodity. Nonetheless, systematic research on the identification and comparison of chemical constituents of these two commercial specifications is yet lacking. Herein, an integrated method combing ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) with ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) was employed for the comprehensively qualitative and quantitative analyses of PO. A total of 62 compounds were identified by UHPLC-Q-TOF/MS, among which 13 potential chemical markers were screened out to distinguish two commercial specifications. Subsequently, the absolute determination method for polygodoraside G, polygonatumoside F, and timosaponin H1 was established and validated by UHPLC-CAD. The contents of the three compounds were 13.33-236.24 µg/g, 50.55-545.04 µg/g, and 13.34-407.83 µg/g, respectively. Furthermore, the ratio of timosaponin H1/polygodoraside G could be applied to differentiate the two specifications. Samples with a ratio <2 are considered XPO and >5 are considered GPO. Therefore, the above results provide a valuable means for the quality control of PO.
RESUMEN
The stable structure and toxic effect of refractory organic pollutants in wastewater lead to the problem of high energy consumption in water treatment technology. Herein, we propose a synergistic purification of refractory wastewater driven by microorganisms and surface microelectric fields (SMEF) over a dual-reaction-center (DRC) catalyst HCLL-S8-M prepared by an in situ growth method of carbon nitride on the Cu-Al2O3 surface. Characterization techniques demonstrate the successful construction of SMEF with strong electrostatic force over HCLL-S8-M based on cation-π interactions between metal copper ions and carbon nitride rings. With the catalyst as the core filler, an innovative fixed bed bioreactor is constructed to purify the actual kitchen-oil wastewater. The removal efficiency of the wastewater even with a very low biodegradability (BOD5/COD = 0.33) can reach 60% after passing through this bioreactor. An innovative reaction mechanism is revealed for the first time that under the condition of a small amount of biodegradable organic matter, the SMEF induces the enrichment of electric active microorganisms (Desulfobulbus and Geobacter) in the wastewater, accelerates the interspecies electron transfer of intertrophic metabolism with the biodegradable bacteria through the extracellular electron transfer mechanism such as cytochrome C and self-secreted electron shuttle. The electrons of the refractory organic pollutants adsorbed on the surface of the catalyst are delocalized by the SMEF, which can be directly utilized by microorganisms through EPS conduction. The SMEF generated by electron polarization can maximize the utilization of pollutants and microorganisms in wastewater and further enhance degradation without adding any external energy, which is of great significance to the development of water self-purification technology.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Nitrilos , Cobre/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisisRESUMEN
Pollution and resource waste caused by the improper disposal of livestock manure, and the threat from the release of emerging contaminants (ECs), are global challenges. Herein, we address the both problems simultaneously by the resourcelized conversion of chicken manure into porous Co@CM cage microspheres (CCM-CMSs) for ECs degradation through the graphitization process and Co-doping modification step. CCM-CMSs exhibit excellent performance for ECs degradation and actual wastewater purification under peroxymonosulfate (PMS) initiation, and show adaptability to complex water environments. The ultra-high activity can maintain after continuous operation over 2160 cycles. The formation of C-O-Co bond bridge structure on the catalyst surface caused an unbalanced electron distribution, which allows PMS to trigger the sustainable electron donation of ECs and electron gain of dissolved oxygen processes, becoming the key to the excellent performance of CCM-CMSs. This process significantly reduces the resource and energy consumption of the catalyst throughout the life cycle of production and application.
RESUMEN
A repetitive plasma source for simulation of mitigated edge localized mode transient heat load is developed. The repetitive plasma source consists of a repetitive pulsed power supply and a pulsed plasma accelerator. The pulsed plasma accelerator is composed of a coaxial cathode, an anode, and an insulator. The inner electrode is the cathode with a diameter of 5 mm, and the outer electrode is the anode with a diameter of 15 mm. An angular magnetic field is generated by the discharge current and acts with the radial current to generate Lorentz force, which drives the plasma ejecting to the outlet. The repetitive pulsed power supply can be divided into three parts, the primary charge circuit, the resonant charge circuit, and the discharge circuit. The time interval between resonant charge and discharge is 4 ms. The repetitive discharge components include ten modules running in parallel. There are four working modes for discharge components, depending on the number of simultaneously discharged modules. For Mode A, the maximum repetitive frequency is 50 Hz, and the transient heat load is 0.06 MJ/m2 when the discharge current is 10.5 kA. For Mode D, the maximum repetitive frequency is 5 Hz, and the transient heat load is 0.45 MJ/m2 when the discharge current is 66 kA. This is of great significance for the study of the interaction between plasma and plasma-facing materials in tokamak.
RESUMEN
The twisted donor-acceptor (D-A) organic formwork with a large dihedral angle (θDA ) is usually adopted to narrow the singlet-triplet energy gap for obtaining excellent thermally activated delayed fluorescence (TADF) emitters. However, the dependence of overall TADF properties on θDA has not been systematically investigated to this day. Taking new designed CzBP, CzBP-1M and CzBP-2M via introducing methyl as investigated models, it is found that (i) with increasing θDA , the charge transfer component in S1 is larger than that in T1 in varying degrees, leading to non-monotonic spin-orbit couplings; (ii) the electron-vibration couplings between S1 and T1 states become the largest when θDA approaching 80°, facilitating phonon-driven up-conversion; (iii) the overall TADF rate reaches a peak at θDA ≈80°. By this, the TADF on/off switching is realized via methyl moiety for regulating θDA from theoretical prediction to experimental confirmation. Importantly, the θDA near 80° would be a good descriptor for screening excellent D-A type TADF emitters.
RESUMEN
Molecular structures, packings, and intermolecular interactions significantly affect the photophysical properties of organic luminogens. In this work, the photoluminescence (PL) and mechanoluminescence (ML) of two pairs of isomers, 1/2 and 3/4, were systematically explored. The fluorescence of crystals 1c and 4c is much brighter than that of their isomers 2c and 3c, respectively. Only 1c is ML-active among all four molecules. Single-crystal structural analysis revealed that isomerization of a substituent group affected their molecular packing and intermolecular interactions. Stronger intermolecular interaction and intact three-dimensional hydrogen-bonded networks were formed only in crystal 1c, which were essential for preventing slippage of molecular layers and generating ML; the other molecules were either lacking π-π interactions or C-H···π interactions. Theoretical calculation suggested that the energy barrier between the Franck-Condon (FC) structure and minimum energy crossing point (MECP) structure of 2/3 was much lower than that of 1/4. Nonradiative decay channels of molecules 2 and 3 were thus more easily activated, which led to their lower quantum yield.