Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100759, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38574859

RESUMEN

Recombinant expression of proteins, propelled by therapeutic antibodies, has evolved into a multibillion dollar industry. Essential here is the quality control assessment of critical attributes, such as sequence fidelity, proper folding, and posttranslational modifications. Errors can lead to diminished bioactivity and, in the context of therapeutic proteins, an elevated risk for immunogenicity. Over the years, many techniques were developed and applied to validate proteins in a standardized and high-throughput fashion. One parameter has, however, so far been challenging to assess. Disulfide bridges, covalent bonds linking two cysteine residues, assist in the correct folding and stability of proteins and thus have a major influence on their efficacy. Mass spectrometry promises to be an optimal technique to uncover them in a fast and accurate fashion. In this work, we present a unique combination of sample preparation, data acquisition, and analysis facilitating the rapid and accurate assessment of disulfide bridges in purified proteins. Through microwave-assisted acid hydrolysis, the proteins are digested rapidly and artifact-free into peptides, with a substantial degree of overlap over the sequence. The nonspecific nature of this procedure, however, introduces chemical background, which is efficiently removed by integrating ion mobility preceding the mass spectrometric measurement. The nonspecific nature of the digestion step additionally necessitates new developments in data analysis, for which we extended the XlinkX node in Proteome Discoverer to efficiently process the data and ensure correctness through effective false discovery rate correction. The entire workflow can be completed within 1 h, allowing for high-throughput, high-accuracy disulfide mapping.

2.
Exp Cell Res ; 437(1): 113996, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508327

RESUMEN

Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/genética
3.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381130

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Asunto(s)
Proteínas de Transporte de Membrana , Cloruro de Sodio , Transporte Iónico , Cationes , Azúcares
4.
Biosens Bioelectron ; 249: 116003, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227993

RESUMEN

Contact lens sensors have been emerging as point-of-care devices in recent healthcare developments for ocular physiological condition monitoring and diagnosis. Fluorescence sensing technologies have been widely applied in contact lens sensors due to their accuracy, high sensitivity, and specificity. As ascorbic acid (AA) level in tears is closely related to ocular inflammation, a fluorescent contact lens sensor incorporating a BSA-Au nanocluster (NC) probe is developed for in situ tear AA detection. The NCs are firstly synthesized to obtain a fluorescent probe, which exhibits high reusability through the quench/recover (KMnO4/AA) process. The probe is then encapsulated with 15 wt% of poly(vinyl alcohol) (PVA) and 1.5 wt% of citric acid (CA) film, and implemented on a closed microfluidic contact lens sensing region. The laser-ablated microfluidic channel in contact lens sensors allows for tear fluid to flow through the sensing region, enabling an in-situ detection of AA. Meanwhile, a smartphone application accompanied by a customized 3D printed readout box is developed for image caption and algorism to quantitative analysis of AA levels. The contact lens sensor is tested within the readout box and the emission signal is collected through the smartphone camera at room temperature with an achieved LOD of 0.178 mmol L-1 (0.0-1.2 mmol L-1). The operational and storage lifetime is also evaluated to characterize the sensor properties and resulted in 20 h and 10 days, respectively. The reusable AA contact lens sensor is promising to lead to an alternative accessible diagnostic method for ocular inflammation in point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Lentes de Contacto , Humanos , Monitoreo Fisiológico , Teléfono Inteligente , Inflamación/diagnóstico , Lágrimas
5.
J Adv Res ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38008175

RESUMEN

BACKGROUND: Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW: This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW: MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.

6.
bioRxiv ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37790566

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.

7.
Sci Rep ; 13(1): 10906, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407689

RESUMEN

Type IIA topoisomerase (TOP2A) is significantly associated with malignant tumor development, invasion, treatment and its prognosis, and has been shown to be a therapeutic target against cancer. In contrast, the role of TOP2A in the immunotherapy of non-small cell lung cancer as well as in Vasculogenic mimicry (VM) formation and its potential mechanisms are unclear. The aim of this study was to investigate the role of TOP2A in proliferation, skeleton regulation, motility and VM production in non-small cell lung cancer and its mechanisms by using bioinformatics tools and molecular biology experiments. Subgroup analysis showed that the low-risk group had a better prognosis, while the high-risk group was positively correlated with high tumor mutational load, M1-type macrophage infiltration, immune checkpoint molecule expression, and immunotherapy efficacy. As confirmed by further clinical specimens, the presence of TOP2A and VM was significantly and positively correlated with poor prognosis. Our study established a model based on significant co-expression of TOP2A genes, which significantly correlated with mutational load and immunotherapy outcomes in patients with non-small cell lung cancer. Further mechanistic exploration suggests that TOP2A plays an important role in immunotherapy and VM formation in NSCLC through upregulation of Wnt3a and PD-L1 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/terapia , Neovascularización Patológica/metabolismo , Pronóstico , Inmunoterapia
8.
Dig Dis Sci ; 68(7): 2866-2877, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160541

RESUMEN

BACKGROUND: Recurrence of common bile duct stones (CBDs) commonly happens after endoscopic retrograde cholangiopancreatography (ERCP). The clinical prediction models for the recurrence of CBDs after ERCP are lacking. AIMS: We aim to develop high-performance prediction models for the recurrence of CBDS after ERCP treatment using automated machine learning (AutoML) and to assess the AutoML models versus the traditional regression models. METHODS: 473 patients with CBDs undergoing ERCP were recruited in the single-center retrospective cohort study. Samples were divided into Training Set (65%) and Validation Set (35%) randomly. Three modeling approaches, including fully automated machine learning (Fully automated), semi-automated machine learning (Semi-automated), and traditional regression were applied to fit prediction models. Models' discrimination, calibration, and clinical benefits were examined. The Shapley additive explanations (SHAP), partial dependence plot (PDP), and SHAP local explanation (SHAPLE) were proposed for the interpretation of the best model. RESULTS: The area under roc curve (AUROC) of semi-automated gradient boost machine (GBM) model was 0.749 in Validation Set, better than the other fully/semi-automated models and the traditional regression models (highest AUROC = 0.736). The calibration and clinical application of AutoML models were adequate. Through the SHAP-PDP-SHAPLE pipeline, the roles of key variables of the semi-automated GBM model were visualized. Lastly, the best model was deployed online for clinical practitioners. CONCLUSION: The GBM model based on semi-AutoML is an optimal model to predict the recurrence of CBDs after ERCP treatment. In comparison with traditional regressions, AutoML algorithms present significant strengths in modeling, which show promise in future clinical practices.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Cálculos Biliares , Humanos , Estudios Retrospectivos , Cálculos Biliares/diagnóstico por imagen , Cálculos Biliares/cirugía , Esfinterotomía Endoscópica , Conducto Colédoco
9.
Environ Sci Pollut Res Int ; 30(30): 75439-75453, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37219773

RESUMEN

The concentration of ozone has been in a rising crescendo in the last decade while the fine particles (PM2.5) is gradually decreasing but still at a high level in central China. Volatile organic compounds (VOCs) are the vital precursors of ozone and PM2.5. A total of 101 VOC species were measured in four seasons at five sites from 2019 to 2021 in Kaifeng. VOC sources and geographic origin of sources were identified by the positive matrix factorization (PMF) model and the hybrid single-particle Lagrangian integrated trajectory transport model. The source-specific OH loss rates (LOH) and ozone formation potential (OFP) were calculated to estimate the effects of each VOC source. The average mixing ratios of total VOCs (TVOC) were 43.15 parts per billion (ppb), of which the alkanes, alkenes, aromatics, halocarbons, and oxygenated VOCs respectively accounted for 49%, 12%, 11%, 14%, and 14%. Although the mixing ratios of alkenes were comparatively low, they played a dominant role in the LOH and OFP, especially ethene (0.55 s-1, 7%; 27.11 µg/m3, 10%) and 1,3-butadiene (0.74 s-1, 10%; 12.52 µg/m3, 5%). The vehicle-related source which emitted considerable alkenes ranked as the foremost contributing factor (21%). Biomass burning was probably influenced by other cities in the western and southern Henan and other provinces, Shandong and Hebei.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , China , Ozono/análisis , Alquenos/análisis , Material Particulado , Emisiones de Vehículos/análisis
10.
Huan Jing Ke Xue ; 44(4): 1933-1942, 2023 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-37040944

RESUMEN

In order to explore the pollution characteristics and sources of atmospheric volatile organic compounds (VOCs) in winter in Kaifeng City, based on the atmospheric VOCs component data obtained from the online monitoring station of the Kaifeng Ecological and Environmental Bureau (Urban Area) from December 2021 to January 2022, the pollution characteristics of VOCs and secondary organic aerosol formation potential (SOAP) were discussed, and the sources of VOCs were analyzed by using the PMF model. The results showed that the average mass concentration of VOCs in winter in Kaifeng City was (104.71±48.56) µg·m-3, and alkanes (37.7%) had the highest proportion of mass concentrations, followed by that of halohydrocarbons (23.5%), aromatics (16.8%), OVOCs (12.6%), alkenes (6.9%), and alkynes (2.6%). The averaged total SOAP contributed by VOCs was 3.18 µg·m-3, of which aromatics contributed as much as 83.8%, followed by alkanes (11.5%). The largest anthropogenic source of VOCs in winter in Kaifeng City was solvent utilization (17.9%), followed by fuel combustion (15.9%), industrial halohydrocarbon emission (15.8%), motor vehicle emission (14.7%), organic chemical industry (14.5%), and LPG emission (13.3%); solvent utilization contributed 32.2% of the total SOAP, followed by motor vehicle emission (22.8%) and industrial halohydrocarbon emission (18.9%). It was found that reducing VOCs emissions from solvent utilization, motor vehicle emission, and industrial halohydrocarbon emission was important to control the formation of secondary organic aerosols in winter in Kaifeng City.

11.
Inorg Chem ; 62(11): 4393-4398, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36892430

RESUMEN

A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties with a long cavity. The prism host can contain bisite or monosite guests through axial coordination binding of porphyrin and aromatic π interactions of terpyridine. The ligands and prismatic complexes were characterized by electrospray ionization mass spectrometry (ESI-MS), TWIM-MS, NMR spectrometry, and single-crystal X-ray diffraction analysis. The guest encapsulation was investigated through ESI-MS, NMR spectrometry, and transient absorption spectroscopy analysis. The binding constant and stability were determined by UV-Vis spectrometry and gradient tandem MS (gMS2) techniques. Based on the prism, a selectively confined condensation reaction was also performed and detected by NMR spectrometry. This study provides a new type of porphyrin- and terpyridine-based host that could be used for the detection of pyridyl- and amine-contained molecules and confined catalysis.

12.
Biochem Biophys Res Commun ; 645: 30-39, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36680934

RESUMEN

Pseudomonas aeruginosa is a Gram-negative bacterium capable of widespread niches, which is also one of the main bacteria that cause patient infection. The metabolic diversity of Pseudomonas aeruginosa is an essential factor in adapting to a variety of environments. Based on the previous studies, adaptive genetic variation in the glycerol kinase GlpK, the glycerol 3-phosphotransferase, contributes to the fitness of bacteria in human bodies, such as Mycobacterium tuberculosis and Escherichia coli. Thus, this study aimed to explore the molecular evolution and function of glpK in P. aeruginosa. Using extensive population genomic data, we have identified the prevalence of two glpK copies in P. aeruginosa that clustered into distinct branches, which were later known as Clade 1 and 2. The evolution analysis revealed that glpK in Clade 1 derived from an ancestral P. aeruginosa species and the other from an ancient horizontal gene transfer event. In addition, we confirmed that the GlpK in Clade 2 still retained glycerol kinase activity but was much weaker than that of GlpK in Clade 1. We demonstrated the importance of the critical amino acid Q70 in GlpK glycerol kinase activity by point mutation. Furthermore, Co-expression network analysis implied that the two glpK copies of P. aeruginosa regulate separate networks and may be a strategy to improve fitness in P. aeruginosa.


Asunto(s)
Glicerol Quinasa , Pseudomonas aeruginosa , Humanos , Glicerol/metabolismo , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Fosforilación , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
BMC Pulm Med ; 22(1): 377, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207695

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. METHODS: A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. RESULTS: Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan-Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. CONCLUSIONS: ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Neoplasias Pulmonares/patología , Neovascularización Patológica , Pronóstico , Proteína de Unión al GTP rhoA/metabolismo
14.
Sci Total Environ ; 844: 156998, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35787908

RESUMEN

In order to achieve the precise control of the volatile organic compounds (VOCs) species with high ozone (O3) formation contribution from key sources in Panjin and Yingkou, two coastal industrial cities with severe O3 pollution along the Liaodong Bay, northeast China, the ambient concentrations of 99 VOCs species were measured online at urban-petrochemical (XLT), suburban-industrial (PP), and rural (XRD) sites in July 2019, contemporary monthly anthropogenic VOCs emission inventories were developed. The source contribution of ambient VOCs resolved by positive matrix factorization (PMF) model was comparable with emission inventories, and the location of VOCs sources were speculated by potential source contribution function (PSCF). 17.5 Gg anthropogenic VOCs was emitted in Panjin and Yingkou in July 2019 with potential to form 54.7 Gg-O3 estimated by emission inventories. The average VOC mixing ratios of 47.1, 26.7, and 16.5 ppbv was observed at XLT, PP, and XRD sites, respectively. Petroleum industry (22 %), organic chemical industry (21 %), and mobile vehicle emission (19 %) were identified to be the main sources contributing to O3 formation at XLT site by PMF, while it is organic chemical industry (33 %) and solvent utilization (28 %) contributed the most at PP site. Taking the subdivided source contributions of emission inventories and source locations speculated by PSCF into full consideration, organic raw chemicals manufacturing, structural steel coating, petroleum refining process, petroleum products storage and transport, off-shore vessels, and passenger cars were identified as the key anthropogenic sources. High O3-formation contribution sources, organic chemical industry and solvent utilization were located in the industrial parks at the junction of the two cities and the southeast of Panjin, and petroleum industry distributed in the whole Panjin and offshore areas. These results identify the key VOCs species and sources and speculate the potential geographical location of sources for precisely controlling ground-level O3 along the Liaodong Bay.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Petróleo , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Bahías , China , Monitoreo del Ambiente/métodos , Ozono/análisis , Solventes , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
15.
ACS Sens ; 7(6): 1615-1633, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35640088

RESUMEN

Personalized and point-of-care (POC) diagnoses are critical for ocular physiology and disease diagnosis. Real-time monitoring and continuous sampling abilities of tear fluid and user-friendliness have become the key characteristics for the applied ophthalmic techniques. Fluorescence technologies, as one of the most popular methods that can fulfill the requirements of clinical ophthalmic applications for optical sensing, have been raised and applied for tear sensing and diagnostic platforms in recent decades. Wearable sensors in this case have been increasingly developed for ocular diagnosis. Contact lenses, as one of the commercialized and popular tools for ocular dysfunction, have been developed as a platform for fluorescence sensing in tears diagnostics and real-time monitoring. Numbers of biochemical analytes have been examined through developed fluorescent contact lens sensors, including pH values, electrolytes, glucose, and enzymes. These sensors have been proven for monitoring ocular conditions, enhancing and detecting medical treatments, and tracking efficiency of related ophthalmic surgeries at POC settings. This review summarizes the applied ophthalmic fluorescence sensing technologies in tears for ocular diagnosis and monitoring. In addition, the cooperation of fabricated fluorescent sensor with mobile phone readout devices for diagnosing ocular diseases with specific biomarkers continuously is also discussed. Further perspectives for the developments and applications of fluorescent ocular sensing and diagnosing technologies are also provided.


Asunto(s)
Técnicas Biosensibles , Lentes de Contacto , Técnicas Biosensibles/métodos , Electrólitos , Glucosa , Lágrimas
16.
Polymers (Basel) ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406358

RESUMEN

The global water crisis is becoming more and more serious, and solar steam generation has recently been investigated for clean water production and wastewater treatment. However, the efficiency of solar vapor transfer is still low. It is a great challenge to find photothermal materials which simultaneously have high energy transfer efficiency, facile production, and are low cost. To address this, we propose a method which is simple, low cost and suitable for large-scale preparation to fabricate the photothermal materials based on using recycled natural rubber sponge (NRS) coated with polydopamine (PDA). X-ray photoelectron spectroscopy analysis confirmed that when the PDA coated the surface of the NRS, the hydrophilicity of the sponge was significantly improved. Scanning electron microscopy characterization showed that the PDA-coated natural rubber sponge (PNRS) maintained the porous 3D skeleton of the pristine sponge. As a result, PNRS exhibits excellent photothermal properties, a very high evaporation rate of 1.35 kg m-2 h-1, and an energy transfer efficiency of 84.6% can be achieved under a light intensity of 1 sun (1 kW m-2). It is worth noting that the vapor generation of PNRS is still at a high level with 1.06 and 1.09 kg m-2 h-1 in the corrosive liquids of 1 M H2SO4 and 0.5 M NaOH, respectively. The photothermal materials based on using recycled NRS have good application prospects in seawater desalination and the purification of wastewater, which also provides a new method for the recycling of waste NRS.

17.
Front Pharmacol ; 13: 877706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387336

RESUMEN

Stroke is the second leading cause of death worldwide and the leading cause of long-term disability that seriously endangers health and quality of human life. Tissue-type fibrinogen activator is currently the only drug approved by FDA for the treatment of ischemic stroke. Neuroprotection is theoretically a common strategy for the treatment of both ischemic and hemorrhagic stroke; therefore, the development of neuroprotective agent has been the focus of research. However, no ideal neuroprotective drug is clinically available. Phosphoglycerate kinase-1 (PGK1) activator has the effect of inhibiting apoptosis and protecting tissue damage, and therefore could be a potential neuroprotective agent. To obtain effective PGK1 activators, we virtually screened a large chemical database and their evaluated the efficacy by the Drosophila oxidative stress model, PGK1 enzymatic activity assay, and oxygen-glucose stripping reperfusion (OGD/R) model. The results showed that compounds 7979989, Z112553128 and AK-693/21087020 are potential PGK1 activators with protective effects against PQ-induced oxidative stress in the Drosophila model and could effectively ameliorate apoptosis induced by OGD/R-induced neuronal cell injury. Additionally, compounds 7979989 and Z112553128 are effective in alleviating LPS-induced cellular inflammation. This study indicated that these compounds are promising lead compounds that provide theoretical and material basis to the neuroprotective drug discovery.

18.
Sci Total Environ ; 826: 153994, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35227718

RESUMEN

Spatiotemporal change patterns of China's industrial VOCs emissions were explored in response to integrated air quality control policies during 2013-2019, and future emissions predicted under the two different scenarios targeting 2030. China's industrial VOCs emissions were decreased to 15.72 Tg in 2019, of which chemical industry, industrial painting, petroleum industry, coal-coking industry, and other industries respectively accounted for 31.0%, 23.9%, 15.6%, and 13.0%, 16.3%, after peaking at 16.40 Tg in 2016. VOC emissions from the petroleum industry and industrial painting showed a continuous increase, with emissions increasing by 0.46 Tg and 0.71 Tg. VOC emissions from the chemical industries increased by 0.91 Tg during 2013-2016 and decreased by 0.72 Tg during 2016-2019. Industrial VOCs emissions in the Beijing-Tianjin-Hebei, Shandong Peninsula, and Central Plain in 2019 respectively reduced by 12.0%, 3.2%, and 8.7% compared to 2013 due to stringent control measures and closure/relocation of highly polluting enterprises. By contrast, industrial VOCs emissions in the West Coast of the Strait and the Central Guizhou increased by 38.1% and 31.8% during 2013-2019. In summary, China's industrial high VOCs emission areas were shifting from key areas to its surrounding areas, resulting in little change in total VOCs emissions. The coal-coking industry, architectural painting, petroleum refining, and pharmaceutical industry will have the most considerable reduction responsibility to reduce VOCs emissions in the future. Guangdong, Jiangsu, Shandong, and Zhejiang will share the highest reduction responsibility, accounting for approximately 40% of national emission reduction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , China , Carbón Mineral , Compuestos Orgánicos Volátiles/análisis
20.
Front Oncol ; 12: 1072474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636552

RESUMEN

Background: Currently, studies have shown that a high dose of radiotherapy to the throat have various harmful and adverse effects on the patients' laryngeal function, resulting in the development of pneumonia. This study aimed to explore how radiotherapy dose affected the probability of pneumonia following laryngeal cancer surgery. Materials and methods: A retrospective analysis was done on patients diagnosed with laryngeal cancer between 2010 and 2020 and were treated surgically and with postoperative radiotherapy in the same institution. This study included 108 patients in total, 51 of who were in the low-dose group and 57 of whom were in the high-dose group. Age, gender, the location of laryngeal cancer, the presence or absence of lymph node metastasis, and other demographic and clinical characteristics were collected, and the prevalence of postoperative pneumonia was compared between the two groups. Results: The total prevalence of postoperative pneumonia was 59.3%, but there was a significant difference between the two groups(high-dose group 71.9% VS low-dose group 45.1%; p=0.005). A total of 9.3% (10/108) of the patients had readmission due to severe pneumonia, and the rate of readmission due to pneumonia was significantly different between the two groups (high-dose group 15.8% VS low-dose group 2.0%, p=0.032). Additionally, the high-dose group's prevalence of Dysphagia was significantly higher than the low-dose group's. According to multivariate logistic modeling, high-dose radiation was a risk factor for pneumonia (OR=4.224, 95%CI =1.603-11.131, p=0.004). Conclusion: Pneumonia risk could increase with radiotherapy doses > 50 Gy in the treatment of laryngeal cancer. Therefore, we recommend that when the radiation dose surpasses 50Gy, doctors should pay particular attention to the lung health of patients with laryngeal cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA