Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 15(1): 103-111, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31535658

RESUMEN

Zebrafish and human genomes are highly homologous; however, despite this genomic similarity, adult zebrafish can achieve neuronal proliferation, regeneration and functional restoration within 6-8 weeks after spinal cord injury, whereas humans cannot. To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury, and to explore the key genes and pathways of axonal regeneration after spinal cord injury, microarray GSE56842 was analyzed using the online tool, GEO2R, in the Gene Expression Omnibus database. Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes. Finally, we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals. A total of 636 differentially expressed genes were obtained, including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained. A protein-protein interaction network contained 480 node genes and 1976 node connections. We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score. The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish. Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish. Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells, such as Schwann cells or neural progenitor cells, after spinal cord injury in zebrafish. Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish, providing targets for treatment of spinal cord injury in mammals.

2.
Neural Regen Res ; 12(12): 2084-2091, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29323050

RESUMEN

Schwann cells play a critical role in peripheral nerve regeneration through dedifferentiation and proliferation. In a previous study, we performed microarray analysis of the sciatic nerve after injury. Accordingly, we predicted that long non-coding RNA NONMMUG014387 may promote Schwann cell proliferation after peripheral nerve injury, as bioinformatic analysis revealed that the target gene of NONMMUG014387 was collagen triple helix repeat containing 1 (Cthrc1). Cthrc1 may promote cell proliferation in a variety of cells by activating Wnt/PCP signaling. Nonetheless, bioinformatic analysis still needs to be verified by biological experiment. In this study, the candidate long non-coding RNA, NONMMUG014387, was overexpressed in mouse Schwann cells by recombinant adenovirus transfection. Plasmid pHBAd-MCMV-GFP-NONMMUG014387 and pHBAd-MCMV-GFP were transfected into Schwann cells. Schwann cells were divided into three groups: control (Schwann cells without intervention), Ad-GFP (Schwann cells with GFP overexpression), and Ad-NONMMUGO148387 (Schwann cells with GFP and NONMMUGO148387 overexpression). Cell Counting Kit-8 assay was used to evaluate proliferative capability of mouse Schwann cells after NONMMUG014387 overexpression. Polymerase chain reaction and western blot assay were performed to investigate target genes and downstream pathways of NONMMUG014387. Cell proliferation was significantly increased in Schwann cells overexpressing lncRNA NONMMUG014387 compared with the other two groups. Further, compared with the control group, mRNA and protein levels of Cthrc1, Wnt5a, ROR2, RhoA, Rac1, JNK, and ROCK were visibly up-regulated in the Ad-NONMMUGO148387 group. Our findings confirm that long non-coding RNA NONMMUG014387 can promote proliferation of Schwann cells surrounding the injury site through targeting Cthrc1 and activating the Wnt/PCP pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...