Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552179

RESUMEN

General anesthesia has been shown to induce significant changes in the functional connectivity of the cerebral cortex. However, traditional methods such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) lack the spatial resolution to study the effects of general anesthesia on individual cortical neurons. This study aimed to use high-resolution two-photon imaging, which can provide single-neuron resolution, to investigate the characteristics of consciousness under general anesthesia. We used C57BL/6J and Thy1-GCamp6s mice and found that at similar levels of sedation, as measured by EEG, dexmedetomidine did not significantly inhibit the spontaneous activity of neuronal somata in the S1 cortex, but preserved the frequency of calcium events in neuronal spines. In contrast, propofol and ketamine dramatically inhibited the spontaneous activity of both neuronal somata and spines. The S1 cortex still responded to whisker stimulation under dexmedetomidine anesthesia, but not under propofol or ketamine anesthesia. Our results suggest that dexmedetomidine anesthesia has unique neuronal properties associated with its ability to facilitate easy awakening in the clinic. These findings provide insights into the development of more effective strategies for monitoring consciousness during general anesthesia.

2.
RSC Adv ; 12(37): 23762-23768, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36093255

RESUMEN

Simple, rapid and sensitive analysis of drug-derived pollutants is critically valuable for environmental monitoring. Here, taking acetaminophen, hydroquinone and catechol as a study example, a sensor based on an ITO/APTES/r-GO@Au electrode was developed for separate and simultaneous determination of phenolic pollutants. ITO electrodes that are modified with 3-aminopropyltriethoxysilane (APTES), graphene (GO) and Au nanoparticles (Au NPs) can significantly enhance the electronic transport of phenolic pollutants at the electrode surface. The redox mechanisms of phenolic pollutants include the electron transfer with the enhancement of r-GO@Au. The modified ITO electrode exhibits excellent electrical properties to phenolic pollutants and a good linear relationship between ECL intensity and the concentration of phenolic pollutants, with a limit of detection of 0.82, 1.41 and 1.95 µM, respectively. The separate and simultaneous determination of AP, CC and HQ is feasible with the ITO/APTES/r-GO@Au electrode. The sensor shows great promise as a low-lost, sensitive, and rapid method for simultaneous determination of drug-derived pollutants.

3.
RSC Adv ; 12(5): 3157-3164, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425325

RESUMEN

Ru(bpy)3Cl2/TPrA is a prominent and widely used ECL system in analytical science. However, the co-reactant TPrA restricts the variety of applications because of its toxicity, volatility, and high cost. Here, we use arginine (Arg) as an alternative co-reactant for Ru(bpy)3 2+ by taking advantage of its low cost, non-toxicity, and biocompatibility. The mechanism of the Ru(bpy)3 2+/Arg system is that the deprotonated Arg can react with Ru(bpy)3 2+ to release emission. The similarity between the Ru(bpy)3 2+/Arg, Ru(bpy)3 2+/TPrA, and Ru(bpy)3 2+/DBAE systems demonstrates that Arg can be used as an alternative co-reactant for Ru(bpy)3 2+ ECL. As a proof of concept, we achieve an excellent performance for acetaminophen (Ace) detection based on the specificity of Arg and Ace, with excellent linearity, low detection limits, and good recoveries. This work is promising to expand the scope of the Ru(bpy)3 2+/Arg system and move forward their applications in bioassays.

4.
J Pharm Biomed Anal ; 210: 114574, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34999432

RESUMEN

In present study, a comprehensive strategy integrating multiple chromatographic and chemometric methods to simultaneously characterize the volatile and non-volatile components was developed for the holistic quality evaluation of commercial Agastache rugosa (AR), a common edible and medicinal herb, collected in China. The volatile components and the non-volatile components were characterized by GC-MS and UPLC-QTOF-MS/MS, respectively. And the data were analyzed either independently or integratively by multivariate statistical analysis (MVS) for the quality assessment of commercial samples. The results revealed that the commercial AR samples were different in both the composition and the content of volatile components. However, the compositions of non-volatile components in commercial AR were generally similar, whereas the contents of some components were different. All the results indicated that the holistic quality of commercial AR was inconsistent, and the commercial samples collected could be classified into two main groups, the volatile components were majorly responsible for the classification. Whether or not the holistic quality variations affect the efficacy of AR deserves further investigation.


Asunto(s)
Agastache , Plantas Medicinales , Quimiometría , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem
5.
J Chromatogr A ; 1651: 462307, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34161837

RESUMEN

The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Espectrometría de Masas , Medicina Tradicional China/tendencias , Técnicas de Química Analítica/tendencias , Humanos , Proyectos de Investigación
6.
Anal Chem ; 93(24): 8536-8543, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34107211

RESUMEN

Nitric oxide (NO) is a molecule of physiological importance, and the function of NO depends on its concentration in biological systems, particularly in cells. Concentration-based analysis of intracellular NO can provide insight into its precise role in health and disease. However, current methods for detecting intracellular NO are still inadequate for quantitative analysis. In this study, we report a quantitative mass spectrometry probe approach to measure NO levels in cells. The probe, Amlodipine (AML), comprises a Hantzsch ester group that reacts with NO to form a pyridine, Dehydro Amlodipine (DAM). Quantification of DAM by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allows specific measurement of intracellular NO levels. Notably, the AML/NO reaction proceeds rapidly (within 1 s), which is favorable for NO detection considering its large diffusivity and short half-life. Meanwhile, studies under simulated physiological conditions revealed that the AML response to NO is proportional and selective. The presented UPLC-MS/MS method showed high sensitivity (LLOQ = 0.24 nM) and low matrix interference (less than 15%) in DAM quantification. Furthermore, the mass spectrometry probe approach was demonstrated by enabling the measurement of endogenous and exogenous NO in cells. Hence, the quantitative UPLC-MS/MS method developed using AML as a probe is expected to be a new method for intracellular NO analysis.


Asunto(s)
Óxido Nítrico , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Reproducibilidad de los Resultados
7.
Artículo en Inglés | MEDLINE | ID: mdl-34052560

RESUMEN

Although Cynomorium songaricum Rupr. polysaccharide (CSP) has been examined for its effects on glucose regulation, its underlying mechanism is still unclear. To address this issue, a MS-based lipidomics strategy was developed to gain a system-level understanding of the mechanism of CSP on improving type 2 diabetes mellitus (T2DM). UPLC-QTOF/MS and multivariate statistical tools were used to identify the alteration of serum metabolites associated with T2DM and responses to CSP treatment. As a result, 35 potential biomarkers were found and identified in serum, amongst which 26 metabolites were regulated to normal like levels after the administration of CSP. By analyzing the metabolic pathways, glycerophospholipid metabolism was suggested to be closely involved. These results indicated that the intake of CSP exhibited promising anti-diabetic activity, largely due to the regulation of phospholipid metabolism, including phosphatidylcholines, lysophosphatydylcholines, phosphtatidylethanolamines and sphingomyelins.


Asunto(s)
Cynomorium/química , Diabetes Mellitus Tipo 2/metabolismo , Lipidómica , Polisacáridos/farmacología , Animales , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Extractos Vegetales/farmacología
8.
Anal Chim Acta ; 1139: 68-78, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190711

RESUMEN

Neurotransmitter (NT) abnormalities in the enteric nervous system have been reported as crucial roles to regulate the intestinal inflammation and gut immune homeostasis. Capturing quantitative changes at the NT metabolome provides an opportunity to develop an understanding of neuroimmune-mediated inflammation. Given the wide diversity of chemical characterizations in the NTs, only partial coverage of the NT metabolome can be simultaneously quantified in a single-run analysis. Herein, we summarized the distribution of functional groups of compound entries in the NT metabolome. Based on this information, an orthogonal dansyl-labeling and label-free dual pretreatment approach was separately designed to target phenol and amine NTs and tertiary amine and choline NTs. By combining the dansyl-labeled and unlabeled NTs within a single vial, a comprehensive and practical approach was optimized for quantifying high coverage of NT metabolome in a single-run analysis on the reversed-phase C18 column. Method validation indicated good linearity with correlation coefficients (R2) > 0.99, intra- and interday accuracy with relative error < ±20%, and precision with relative standard deviations of ≤15%. With this method, we could simultaneously monitor the alterations of cholines, amines, amino acids, tryptophan and phenylalanine biological pathways in dextran sulphate sodium-induced colitis mice. The measured levels of NT metabolome ranged from 0.0007 to 3.540 µg/mg in intestinal contents and 0.013-154.54 µg/mL in serum samples. The NT metabolism was disrupted by colitis, characterized by the changed NT levels in serum and excessive amino acid NTs accumulation in the intestinal contents. We envisage that the orthogonal approach is of great significance for the comprehensive determination of targeted metabolomics. NTs have the potential to be biomarkers for clinical metabolomics.


Asunto(s)
Sistema Nervioso Entérico , Metabolómica , Animales , Biomarcadores/metabolismo , Sistema Nervioso Entérico/metabolismo , Metaboloma , Ratones , Neurotransmisores
9.
Anal Chim Acta ; 1136: 187-195, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33081943

RESUMEN

Long chain unsaturated fatty acids (LCUFAs) are emerging as critical contributors to inflammation and its resolution. Sensitive and accurate measurement of LCUFAs in biological samples is thus of great value in disease diagnosis and prognosis. In this work, a fluorous-derivatization approach for UPLC-MS/MS quantification of LCUFAs was developed by employing a pair of fluorous reagents, namely 3-(perfluorooctyl)-propylamine (PFPA) and 2-(perfluorooctyl)-ethylamine (PFEA). With this method, the LCUFAs in biological samples were perfluoroalkylated with PFPA and specifically retained on a fluorous-phase LC column, which largely reduced matrix interferences-induced quantitation deviation. Moreover, PFEA-labeled LCUFAs standards were introduced as one-to-one internal standards to farthest ensure unbiased results. Application of the proposed method enabled a reliable determination of eight typical LCUFAs with high sensitivity (LLOQ ranged from 30 amol to 6.25 fmol) and low matrix interferences (almost less than 10%). Such a high sensitivity could facilitate the determination of small-volume and low-concentration bio-samples. Further metabolic characterization of these targeted LCUFAs was monitored in OVA-induce asthma mice, requiring only 5 µL serum sample. Our results showed that asthmatic attack led to significant disturbances not only in the concentrations but also in the ratio among these LCUFAs. In view of the favorable advantages in sensitivity and accuracy, the present fluorous-paired derivatization approach will be expected to serve as a new avenue for dissecting the physiological and clinical implications of LCUFAs, thereby shedding light on the management of diseases related to their disturbances.


Asunto(s)
Asma , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Ácidos Grasos , Ácidos Grasos Insaturados , Ratones
10.
Talanta ; 217: 121030, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32498909

RESUMEN

Recent research aimed at the design of mixed-matrix membrane (MMM) to be used for microextraction emphasized on membrane extraction phase with high surface area and porosity. This study explored the influence that surfactants have on MMM extraction efficiency for the first time. The zeolitic imidazolate framework 8-based MMM (ZIF-8-MMM) was synthesized by in situ self-assembly of ZIF-8 on the inner wall of a hollow fiber membrane with the aim of fabricating a microextraction device. By prompting the encapsulation of ionizable analytes in the polar core of reverse micelles, the presence of surfactants in extraction solvent assisted the dissolution of analytes in the fiber membrane lumen and enhanced their adsorption onto ZIF-8. Notably, hereby a microextraction method based on the novel ZIF-8-MMM-reverse micelle (ZIF-8-MMM-RM) system was developed and employed for the extraction and quantitation of two alkaloids (berberine and jatrorrhizine) and two flavonoids (wogonin and wogonoside) in biological samples. The main factors affecting microextraction performance, identity of the extraction solvent, surfactant concentration, sample solution pH and extraction time, were investigated in detail. The method showed good linearity (r2 > 0.99) and repeatability (RSD < 10%), low limits of detection (0.10-0.31 ng mL-1) and high relative recoveries (90.03-98.84%). The enrichment factor values ranged between 48.47 and 54.96. Reverse micelle formation prompted by surfactant addition was demonstrated to effectively assist the extraction of multiple ionizable analytes from biological samples, resulting in a marked improvement of ZIF-8-MMM extraction performance.

11.
Anal Chim Acta ; 1081: 120-130, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446949

RESUMEN

Mass spectrometry-based approaches enable us to capture changes in the metabolome in biological systems with high sensitivity and resolution. But global MS-based profiling of the bile acids (BAs) submetabolome is still a challenging task. Particularly for unconjugated BAs, the collision-induced dissociation (CID) fragment ions showed low ion intensities which were insufficient for analysis. This study is aimed at the development of an anion attachment MS-based approach for pseudotargeted profiling of the BAs submetabolome. We demonstrated that anion attachment MS with the combination use of ammonia fluoride (NH4F) and formate could provide stable anionic adduct ([M + HCOO]-) with good MS responses for unconjugated BAs. A mechanistic study revealed that the underlying rationale is due to the NH4F-induced approximate matching of attractions between BAs and anion for the 24-carboxyl hydrogen. This 24-carboxyl hydrogen regioselectivity is useful to screen for potential unconjugated BAs from the biological matrix. The stability and regioselectivity of anion attachment allowed the establishment of SRM transitions for unconjugated BAs for the first time. To profile conjugated BAs that come from the conjugation of glycine or taurine at 24-carboxyl hydrogen, specific precursor/fragment ion transitions were used for the detection. Finally, SRM-based UPLC-MS/MS method was developed for the pseudotargeted profiling of the BAs submetabolome with good linearity (r2 > 0.995) and high sensitivity (0.20-1.37 ng mL-1 for LLOQ). With this method, a total of 83 BAs, covering 45 unconjugated BAs and 38 conjugated BAs, were successfully determined in different biosamples from experimental colitis mice. The BAs metabolism homeostasis was disrupted by colitis, characterized by the decreased BAs levels in serum and excessive BAs accumuation in the gall bladder and colon. Overall, the present anion attachment MS-based approach is sufficiently sensitive and robust to comprehensively measure various BAs.


Asunto(s)
Compuestos de Amonio/química , Ácidos y Sales Biliares/análisis , Fluoruros/química , Metabolómica/métodos , Animales , Bilis/química , Ácidos y Sales Biliares/química , Cromatografía Líquida de Alta Presión/métodos , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Vesícula Biliar/metabolismo , Masculino , Ratones Endogámicos C57BL , Dodecil Sulfato de Sodio , Espectrometría de Masa por Ionización de Electrospray/métodos , Sulfasalazina/farmacología
12.
Anal Chim Acta ; 1077: 174-182, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31307707

RESUMEN

With the rapid development of immunometabolism, 2-hydroxyglutarate (2-HG) is being promoted as a key immunometabolite to regulate the immune system. Based on the well-established crosstalk between 2-HG and other immunometabolites, here we firstly constructed a 2-HG metabolic panel by mapping the related metabolic pathways. Quantitative methods to globally monitor 2-HG metabolic panel are of great importance for immunometabolism study. However, the existence of enantiomer hampers the accurate measurement of these immunometabolites. This study addressed an original isotopically-paired chiral derivatization approach for UPLC-MS/MS quantification of 2-HG metabolic panel. To achieve better chromatographic separation, N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was utilized as an optical resolving reagent to form diastereomers. For accurate quantitation, an 18O2-labeled-TSPC reagent was designed and readily synthesized to produce one-to-one internal standards. The developed approach enabled an accurate quantification of 13 immunometabolites in 2-HG metabolic panel with good linearity (R2 > 0.99) and high sensitivity (0.5-120 fmol for LLOQ). With this method, we were able to simultaneously monitor the specific alterations of 2-HG metabolic panel in collagen-induced rheumatoid arthritis (CIA) rats. The measured levels of this panel ranged from 0.02 to 85.14 µg g-1 for synovium tissue and 0.012 to 87.75 µmol L-1 for serum samples. We envisage that the present isotopically-paired chiral derivatization approach will be practicable for different bio-samples to quantitatively profile the amino- and hydroxyl acids submetabolome, especially for the endogenous enantiomers. By virtue of the low cost of reagents and the simple procedure used in the assay, this method could be readily implemented.


Asunto(s)
Glutaratos/metabolismo , Fenilalanina/análogos & derivados , Animales , Cromatografía Liquida/métodos , Femenino , Marcaje Isotópico , Límite de Detección , Metabolómica/métodos , Oxígeno/química , Isótopos de Oxígeno/química , Ratas Wistar , Reproducibilidad de los Resultados , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos
13.
Front Pharmacol ; 9: 1033, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283337

RESUMEN

Dictamni Cortex (DC) has been reported to be associated with acute hepatitis in clinic and may lead to a selective sub-chronic hepatotoxicity in rats. Nevertheless, the potent toxic ingredient and the underlying mechanism remain unknown. Dictamnine (DTN), the main alkaloid from DC, possesses a furan ring which was suspected of being responsible for hepatotoxicity via metabolic activation primarily by CYP3A4. Herein, the present study aimed to evaluate the role of CYP3A4 in DTN-induced liver injury. The in vitro results showed that the EC50 values in primary human hepatocytes (PHH), L02, HepG2 and NIH3T3 cells were correlated with the CYP3A4 expression levels in corresponding cells. Furthermore, the toxicity was increased in CYP3A4-induced PHH by rifampicin, and CYP3A4 over-expressed (OE) HepG2 and L02 cells. Contrarily, the cytotoxicity was decreased in CYP3A4-inhibited PHH and CYP3A4 OE HepG2 and L02 cells inhibited by ketoconazole (KTZ). In addition, the hepatotoxicity of DTN in enzyme induction/inhibition mice was further investigated in the aspects of biochemistry, histopathology, and pharmacokinetics. Administration of DTN in combination with KTZ resulted in attenuated liver injury, including lower alanine transaminase and aspartate transaminase activities and greater AUC and C max of serum DTN, whereas, pretreatment with dexamethasone aggravated the injury. Collectively, our findings illustrated that DTN-induced hepatotoxicity correlated well with the expression of CYP3A4, namely inhibition of CYP3A4 alleviated the toxicity both in vitro and in vivo, and induction aggravated the toxicity effects.

14.
J Pharm Biomed Anal ; 161: 336-343, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30199808

RESUMEN

Recent studies have demonstrated the important role of short-chain fatty acids (SCFAs) in the maintenance of homeostasis of respiratory immunity. However, there is still no report focus on the determination of SCFAs level in bronchoalveolar lavage fluid (BALF), the most common sample used for screening biomarkers of the pulmonary diseases. Herein, an ultra-high-performance liquid chromatography with LTQ-Orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap) oriented 3-nitrophenylhydrazine (3-NPH)-based derivatization method was developed for the quantification of SCFAs in BALF. To achieve accurate quantitation, d4-acetate was used as internal standard to compensate for the matrix effects. Method validation showed a good linearity (R2 > 0.9992) with wide concentration range, and the intra-day and inter-day precision for determination of eight SCFAs in BALF samples was ≤ 14.79%. The quantitation accuracy, assessed by relative recoveries, ranged from 90% to 110% for target SCFAs at three concentration levels. Matrix effects ranged from 85% to 115%, and the lower limits of quantification of these targeted SCFAs were varied from 3 to 24 nmol/L. The SCFAs-targeted method was then applied to determine the changed levels in BALF samples from OVA-induced asthma mice and normal mice. In addition, the universality of our developed method was also demonstrated by determining the SCFAs concentrations in feces, serum and lung tissue samples from asthma and normal mice. These results indicate that 3-NPH derivatization based UHPLC-LTQ-Orbitrap provides accurate view of global SCFAs alternation in different samples, giving a support to deduce the origin of SCFAs in lung. The present study is of great importance for understanding the role of SCFAs in modulation of host metabolism and immunity.


Asunto(s)
Asma/metabolismo , Líquido del Lavado Bronquioalveolar/química , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos Volátiles/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Asma/sangre , Asma/inducido químicamente , Ácidos Grasos Volátiles/sangre , Heces/química , Femenino , Límite de Detección , Pulmón/química , Ratones , Fenilhidrazinas/química
15.
RSC Adv ; 8(17): 9074-9082, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35541849

RESUMEN

The extreme complexity of the chemical composition of plant extracts requires an unbiased and comprehensive detection methodology to improve the potential of metabolomic study. The present work, taking five closely related cultivars of Chrysanthemum flowers as a typical case, attempts to develop a metabolomic strategy to find more markers of metabolites for precise differentiation based on headspace gas chromatography-mass spectrometry (HSGC-MS) and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). In detail, 53 batches of Chrysanthemum flower samples were collected and analyzed. The fusion of datasets from HSGC-MS and UHPLC-QTOF/MS was done in two different ways. After comparison, the fusion of the total peak area normalized metabolomic data was performed for multivariate statistical analysis. A total of 21 marker compounds (including 14 volatile and 7 nonvolatile metabolites) were identified, and a heatmap was employed for clarifying the distribution of the identified metabolites among the five cultivars. The results indicated that the integrated platform benefited the metabolomic study of medicinal and edible herbs by providing complementary information through fully monitoring functional constituents.

16.
Zhongguo Zhong Yao Za Zhi ; 42(21): 4246-4250, 2017 Nov.
Artículo en Chino | MEDLINE | ID: mdl-29271167

RESUMEN

The increasingly apparent liver injury problems of bone strengthening Chinese medicines have brought challenges for clinical application, and it is necessary to consider both effectiveness and safety in screening anti-osteoporosis Chinese medicines. Metabolic transformation is closely related to drug efficacy and toxicity, so it is significant to comprehensively consider metabolism-action/toxicity(M-Act/Tox) for screening anti-osteoporosis Chinese medicines. The current evaluation models and the number of compounds(including metabolites) severely restrict efficient screening in vivo. By referring to previous relevant research and domestic and abroad literature, zebrafish M-Act/Tox integrative method was put forward for efficiently screening anti-osteoporosis herb medicines, which has organically integrated zebrafish metabolism model, osteoporosis model and toxicity evaluation method. This method can break through the bottleneck and blind spots that trace compositions can't achieve efficient and integrated in vivo evaluation, and realize both efficient and comprehensive screening on anti-osteoporosis traditional medicines based on in vivo process taking both safety and effectiveness into account, which is significant to accelerate discovery of effective and safe innovative traditional Chinese medicines for osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/análisis , Medicamentos Herbarios Chinos/análisis , Osteoporosis/tratamiento farmacológico , Plantas Medicinales/química , Animales , Conservadores de la Densidad Ósea/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Medicina Tradicional China , Pruebas de Toxicidad , Pez Cebra
17.
Zhongguo Zhong Yao Za Zhi ; 42(1): 41-48, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-28945023

RESUMEN

The safety of traditional Chinese medicine (TCM) has received the widespread attention in recent years. Hepatotoxicity of TCM is one of the key problems of the safety of TCM. This article summarized research progress and application prospect in the mechanism of TCM hepatotoxicity, biomarkers, toxic omics database, prevention of hepatotoxicity of the liver cell lines, subcellular fraction, three-dimensional cultivation models, the model animals, aiming to provide theoretical basis for TCM toxicity evaluation and technical guidelines, thus promoting the development of TCM toxicity studies. Hope for Chinese medicine liver toxicity evaluation method provides the theoretical foundation and technical guidelines, promote the development and improvement of TCM liver toxicity research system.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Medicamentos Herbarios Chinos/toxicidad , Medicina Tradicional China , Animales , Bases de Datos Factuales , Humanos , Investigación
18.
J Chromatogr A ; 1515: 100-108, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28801043

RESUMEN

Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Larva/metabolismo , Pez Cebra/metabolismo , Animales , Biotransformación , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacología , Femenino , Flavonoides/metabolismo , Flavonoides/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Redes y Vías Metabólicas , Pez Cebra/crecimiento & desarrollo
19.
Anal Chim Acta ; 977: 28-35, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28577595

RESUMEN

In this study, a new strategy combining mass spectrometric (MS) techniques with partial least squares regression (PLSR) was proposed to identify and quantify closely related adulterant herbal materials. This strategy involved preparation of adulterated samples, data acquisition and establishment of PLSR model. The approach was accurate, sensitive, durable and universal, and validation of the model was done by detecting the presence of Fritillaria Ussuriensis Bulbus in the adulteration of the bulbs of Fritillaria unibracteata. Herein, three different MS techniques, namely wooden-tip electrospray ionization mass spectrometry (wooden-tip ESI/MS), ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and UPLC-triple quadrupole tandem mass spectrometry (UPLC-TQ/MS), were applied to obtain MS profiles for establishing PLSR models. All three models afforded good linearity and good accuracy of prediction, with correlation coefficient of prediction (rp2) of 0.9072, 0.9922 and 0.9904, respectively, and root mean square error of prediction (RMSEP) of 0.1004, 0.0290 and 0.0323, respectively. Thus, this strategy is very promising in tracking the supply chain of herb-based pharmaceutical industry, especially for identifying adulteration of medicinal materials from their closely related herbal species.


Asunto(s)
Contaminación de Medicamentos , Fritillaria/química , Preparaciones de Plantas/normas , Cromatografía Líquida de Alta Presión , Análisis de los Mínimos Cuadrados , Preparaciones de Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
20.
Anal Chim Acta ; 950: 138-146, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27916118

RESUMEN

The elevation of free fatty acids (FFAs) has been regarded as a universal metabolic signature of excessive adipocyte lipolysis. Nowadays, in vitro lipolysis assay is generally essential for drug screening prior to the animal study. Here, we present a novel in vitro approach for lipolysis measurement combining UHPLC-Orbitrap and partial least squares (PLS) based analysis. Firstly, the calibration matrix was constructed by serial proportions of mixed samples (blended with control and model samples). Then, lipidome profiling was performed by UHPLC-Orbitrap, and 403 variables were extracted and aligned as dataset. Owing to the high resolution of Orbitrap analyzer and open source lipid identification software, 28 FFAs were further screened and identified. Based on the relative intensity of the screened FFAs, PLS regression model was constructed for lipolysis measurement. After leave-one-out cross-validation, ten principal components have been designated to build the final PLS model with excellent performances (RMSECV, 0.0268; RMSEC, 0.0173; R2, 0.9977). In addition, the high predictive accuracy (R2 = 0.9907 and RMSEP = 0.0345) of the trained PLS model was also demonstrated using test samples. Finally, taking curcumin as a model compound, its antilipolytic effect on palmitic acid-induced lipolysis was successfully predicted as 31.78% by the proposed approach. Besides, supplementary evidences of curcumin induced modification in FFAs compositions as well as lipidome were given by PLS extended methods. Different from general biological assays, high resolution MS-based method provide more sophisticated information included in biological events. Thus, the novel biological evaluation model proposed here showed promising perspectives for drug evaluation or disease diagnosis.


Asunto(s)
Adipocitos/efectos de los fármacos , Análisis de los Mínimos Cuadrados , Lipólisis , Espectrometría de Masas , Animales , Calibración , Células Cultivadas , Curcumina/química , Evaluación Preclínica de Medicamentos , Masculino , Ratones Endogámicos ICR , Ácido Palmítico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA