Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(4): 378-391, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36688592

RESUMEN

Arbuscular mycorrhizal (AM) fungi establish mutualistic symbiosis with a wide range of terrestrial plants, including rice. However, the mechanisms underlying the initiation of AM symbiosis are yet to be elucidated, particularly in nonleguminous plants. We previously demonstrated that chitin elicitor receptor kinase 1 (OsCERK1), a lysin motif receptor-like kinase essential for chitin-triggered immunity, also plays a key role in AM symbiosis in rice. However, the mechanisms underlying the regulation of switching between immunity and symbiosis by OsCERK1 are yet to be fully elucidated. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK)/DOES NOT MAKE INFECTIONS 2 (DMI2) is a leucine-rich repeat receptor-like kinase associated with both root nodule symbiosis and AM symbiosis in legumes. The homolog of SYMRK in rice, OsSYMRK, has a shorter form than that in legumes because OsSYMRK lacks a malectin-like domain (MLD). The MLD reportedly contributes to symbiosis in Lotus japonicus; however, the contribution of OsSYMRK to AM symbiosis in rice remains unclear. Phylogenetic analyses indicated that the MLD of SYMRK/DMI2 is widely conserved even in mosses and ferns but absent in commelinids, including rice. To understand the function of OsSYMRK, we produced an Ossymrk knockout mutant using genome editing technology. AM colonization was mostly abolished in Ossymrk with a more severe phenotype than Oscerk1. Ca2+ spiking against chitin tetramer was also diminished in Ossymrk. In contrast, comparable defense responses against chitin heptamer to the wild type were observed in Ossymrk. Bimolecular fluorescence complementation studies demonstrating an interaction between OsSYMRK and OsCERK1 indicate that OsSYMRK may play an important role in switching from immunity to symbiosis through the interaction with OsCERK1 in rice.


Asunto(s)
Micorrizas , Oryza , Simbiosis/genética , Oryza/fisiología , Filogenia , Micorrizas/fisiología , Fosfotransferasas/genética , Quitina , Proteínas de Plantas/genética
2.
Plant Biotechnol (Tokyo) ; 40(4): 321-336, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38434111

RESUMEN

Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of ß-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.

3.
Plant Biotechnol (Tokyo) ; 39(2): 119-128, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937538

RESUMEN

In rice, the lysin motif (LysM) receptor-like kinase OsCERK1, originally identified as the essential molecule for chitin-triggered immunity, plays a key role in arbuscular mycorrhizal (AM) symbiosis. As we previously reported, although AM colonization was largely repressed at 2 weeks after inoculation (WAI), arbuscules were observed at 5 WAI in oscerk1 mutant. Conversely, most mutant plants that defect the common symbiosis signaling pathway exhibited no arbuscule formation. Concerning the reason for this characteristic phenotype of oscerk1, we speculated that OsRLK10, which is a putative paralog of OsCERK1, may have a redundant function in AM symbiosis. The protein sequences of these two genes are highly conserved and it is estimated that the gene duplication occurred 150 million years ago. Here we demonstrated that OsCERK2/OsRLK10 induced AM colonization and chitin-triggered reactive oxygen species production in oscerk1 knockout mutant as similar to OsCERK1. The oscerk2 mutant showed a slight but significant reduction of AM colonization at 5 WAI, indicating the contribution of OsCERK2 for AM symbiosis. However, the oscerk2;oscerk1 double-knockout mutant produced arbuscules at 5 WAI as similar to the oscerk1 mutant, indicating that the redundancy of OsCERK1 and OsCERK2 did not explain the mycorrhizal colonization in oscerk1 at 5 WAI. These results indicated that OsCERK2 has a potential to regulate both chitin-triggered immunity and AM symbiosis and at least partially contributes to AM symbiosis in rice though the contribution of OsCERK2 appears to be weaker than that of OsCERK1.

4.
Plant Biotechnol (Tokyo) ; 37(3): 359-362, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33088201

RESUMEN

Receptor complex formation at the cell surface is a key step to initiate downstream signaling but the contribution of this process for the regulation of the direction of downstream responses is not well understood. In the plant-microbe interactions, while CERK1, an Arabidopsis LysM-RLK, mediates chitin-induced immune responses, NFR1, a Lotus homolog of CERK1, regulates the symbiotic process with rhizobial bacteria through the recognition of Nod factors. Concerning the mechanistic insight of the regulation of such apparently opposite biological responses by the structurally related RLKs, Nakagawa et al. previously showed that the addition of YAQ sequence, conserved in NFR1 and other symbiotic LysM-RLKs, to the kinase domain of CERK1 switched downstream responses from defense to symbiosis using a set of chimeric receptors, NFR1-CERK1s. These results indicated that such a subtle difference in the cytoplasmic domain of LysM-RLKs could determine the direction of host responses from defense to symbiosis. On the other hand, it is still not understood how such structural differences in the cytoplasmic domains determine the direction of host responses. We here analyzed the interaction between chimeric NFR1s and NFR5, a partner receptor of NFR1, by co-immunoprecipitation (Co-IP) of these proteins transiently expressed in Nicotiana benthamiana. These results indicated that the cytoplasmic interaction between the LysM-RLKs is important for the symbiotic receptor complex formation and the YAQ containing region of NFR1 contributes to trigger symbiotic signaling through the successful formation of NFR1/NFR5 complex.

5.
Plant Cell Rep ; 39(11): 1517-1523, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32856139

RESUMEN

KEY MESSAGE: The appropriate combination of fluorescent probes enabled the simultaneous visualization of callose deposition and plasma membrane in living Arabidopsis and can be useful for the cell biological study of papilla formation in plants. Localized callose deposition at the site of fungal infection is a central part of papilla formation, which creates a barrier between the host plasma membrane and the cell wall and plays an important role in preventing the penetration of fungal hyphae into the host cells. Using chitin-induced callose deposition as a model system, we examined suitable conditions for the simultaneous visualization of callose deposition and plasma membrane dynamics in living Arabidopsis cotyledons. We found that aniline blue fluorochrome (ABF) for callose staining selectively interferes with FM dyes for membrane visualization depending on the structure of the latter compounds and the proper combination of these fluorescent dyes and staining conditions is a key for successful live-cell imaging. The established conditions enabled the live-cell imaging of chitin-induced callose deposition and host membrane systems. The established system/conditions would also be useful for the cell biological studies on the localized callose deposition in other stress/development-associated processes. The finding that the slight difference in the structure of FM dyes affects the interaction with another fluorescent dye, ABF, would also give useful suggestions for the studies where multiple fluorescent dyes are utilized for live-cell imaging.


Asunto(s)
Arabidopsis/citología , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Glucanos/metabolismo , Células Vegetales/metabolismo , Compuestos de Anilina/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Quitina/metabolismo , Quitina/farmacología , Cotiledón/citología , Cotiledón/metabolismo , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Compuestos de Piridinio/química , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(34): 20932-20942, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778594

RESUMEN

Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. In Arabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+ but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.


Asunto(s)
Quitina/metabolismo , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Quitina/fisiología , Quitosano/metabolismo , Hongos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/efectos de los fármacos
7.
Plant Signal Behav ; 15(8): 1781384, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32567456

RESUMEN

Cell cultures established from various plant species have been used for a range of physiological and biochemical studies. Homogeneity of cell types and size of clusters in the cell culture often gave a clearer and simpler results compared to those obtained with the whole plant. On the other hand, possible variability of physiological conditions and responsiveness to external stimuli between the cell lines could be problematic for comparative studies. Aiming at combining the usefulness of plant cell culture with the rich information and genetic resources of Arabidopsis, we systemically examined the methods/conditions to establish cell lines for comparative studies, which could be applicable to a variety of genetic resources. Arabidopsis cell lines thus established from the meristem of mature seeds showed reproducible and comparable MAMP responses such as ROS generation and defense-related gene expression. MAMP responses of the cultured cells showed the specificity depending on the presence/absence of the corresponding MAMP receptor. Pharmacological study with a protein kinase inhibitor, K252a, also showed the usefulness of the cell culture for such studies. These results indicated the usefulness of the method to establish Arabidopsis cell lines, which are useful for comparative studies between genetic resources.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Methods Mol Biol ; 2132: 401-412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32306347

RESUMEN

Lysin motif (LysM) is a carbohydrate-binding modules found in all kingdoms. LysM binds to N-acetylglucosamine-containing molecules such as peptidoglycan, chitin, Nod factor, and Myc factor and is found in peptidoglycan hydrolases, chitinases, and plant pathogen effectors and plant receptor/co-receptor for defense and symbiosis signaling. This chapter describes the synthesis of a nonradioactive chitin ligand, biotinylated chitin octasaccharide, (GlcNAc)8-Bio, and its application for the detection and characterization of chitin-binding LysM receptor CEBiP in the microsomal membrane fraction of rice suspension-cultured cells by affinity labeling. We also describe the purification of CEBiP from the plasma membrane of the rice cells by affinity chromatography with the synthesized (GlcNAc)8-APEA-CH-Sepharose as an affinity matrix.


Asunto(s)
Acetilglucosamina/química , Quitina/metabolismo , Oryza/crecimiento & desarrollo , Receptores de Superficie Celular/aislamiento & purificación , Marcadores de Afinidad , Membrana Celular/metabolismo , Quitina/química , Cromatografía de Afinidad , Ligandos , Microsomas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Cell Physiol ; 60(11): 2573-2583, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368495

RESUMEN

Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Transducción de Señal/fisiología , Ubiquitina/metabolismo
10.
Plant Cell Physiol ; 60(8): 1804-1810, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31119298

RESUMEN

While ligand-induced autophosphorylation of receptor-like kinases (RLKs) is known to be critical for triggering the downstream responses, biochemical mechanism by which each phosphorylation site contributes to the initiation of corresponding signaling cascades is only poorly understood, except the involvement of some phosphorylation sites in the regulation of catalytic activity of these RLKs. In this article, we first confirmed that the phosphorylation of S493 of AtCERK1 is involved in the regulation of chitin-induced defense responses by the complementation of an atcerk1 mutant with AtCERK1(S493A) cDNA. In vitro kinase assay with the heterologously expressed kinase domain of AtCERK1, GST-AtCERK1cyt, showed that the S493A mutation did not affect the autophosphorylation of AtCERK1 itself but diminished the transphosphorylation of downstream signaling components, PBL27 and PUB4. On the other hand, a phosphomimetic mutant, GST-AtCERK1(S493D)cyt, transphosphorylated these substrates as similar to the wild type AtCERK1. These results suggested that the phosphorylation of S493 does not contribute to the regulation of catalytic activity but plays an important role for the transphosphorylation of the downstream signaling components, thus contributing to the initiation of chitin signaling. To our knowledge, it is a novel finding that a specific phosphorylation site contributes to the regulation of transphosphorylation activity of RLKs. Further studies on the structural basis by which S493 phosphorylation contributes to the regulation of transphosphorylation would contribute to the understanding how the ligand-induced autophosphorylation of RLKs properly regulates the downstream signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Quitina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosforilación/genética , Fosforilación/fisiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Plant Biotechnol (Tokyo) ; 36(4): 275-278, 2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31983882

RESUMEN

Reactive oxygen species generation is one of the most popular index of plant immune responses. Leaf disk assay has been commonly used for MAMP/elicitor-induced ROS analysis by many groups. However, the reproducibility of the leaf disk assay relies on the skills of the people engaged in the experiments and the experiment itself seems not suitable for some plant species, which had a tough leaf structure and lower penetration efficiency of MAMPs/elicitors. In this study, we prepared a handmade leaf cutter to cut out the leaf fragments with uniform size and slits. The use of such fragments obtained by the new leaf cutter as well as the increase of the number of leaf fragments for each experiment improved the reliability and reproducibility of the leaf disk assay. This cutter was also successfully applied to rice leaf disk assay, indicating the applicability to other plant spices.

12.
Plant Signal Behav ; 13(2): e1435228, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29388878

RESUMEN

Autophosphorylation of PRR is a critical event for the activation of immune signaling in plant. However, the detailed function of these phosphorylation sites is still not well understood. We analyzed the function of an autophosphorylation site of Arabidopsis CERK1, Y428, in immune signaling. Biochemical characterization of CERK1 mutants transiently expressed in N. benthamiana indicated that Y428 plays a crucial role for the in vivo activation of CERK1, differently from the previous observation by the in vitro kinase assay with its cytoplasmic domain. Similar discrepancy between in vitro and in vivo kinase assay was also reported for the corresponding phosphorylation site of EFR, suggesting that these conserved tyrosine residues play important roles for the activation of both RD and non-RD RLKs.


Asunto(s)
Nicotiana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/genética
13.
Innate Immun ; 24(2): 92-100, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29105533

RESUMEN

Plants possess the ability to recognize microbe-associated molecular patterns (MAMPs) and PAMPs through the PRRs, and initiate pattern-triggered immunity. MAMPs are derived from cell-envelope components, secreted materials and cytosolic proteins from bacteria, oomycetes or fungi, and some MAMPs play a similar function in the innate immunity in mammals. Chitin is a representative fungal MAMP and triggers defense signaling in a wide range of plant species. The chitin receptors CEBiP and CERK1 on the plasma membrane have LysM (lysin motif) in their ectodomains. These molecules play an important role for the defense responses in rice and Arabidopsis, strictly recognizing the size and acetylated form of chitin oligosaccharides. However, related LysM receptors also play major roles for the signaling in root nodule and arbuscular mycorrhizal symbiosis. This review summarizes current knowledge on the molecular mechanisms of the defense and symbiosis signaling mediated by LysM receptors, including the activation steps of chitin-induced defense signaling downstream of LysM receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Quitina/inmunología , Micorrizas/fisiología , Inmunidad de la Planta , Plantas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Acetilación , Proteínas de Arabidopsis/genética , Quitina/química , Lisina/genética , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Dominios Proteicos/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Simbiosis
14.
New Phytol ; 217(3): 1042-1049, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194635

RESUMEN

Plant cell surface receptor-like kinases (RLKs) mediate the signals from microbe-associated molecular patterns (MAMPs) that induce immune responses. Lipopolysaccharide (LPS), the major constituent of the outer membrane of gram-negative bacteria, is a common MAMP perceived by animals and plants; however, the plant receptors/co-receptors are unknown except for LORE, a bulb-type lectin S-domain RLK (B-lectin SD1-RLK) in Arabidopsis. OsCERK1 is a multifunctional RLK in rice that contains lysin motifs (LysMs) and is essential for the perception of chitin, a fungal MAMP, and peptidoglycan, a bacterial MAMP. Here, we analyzed the relevance of OsCERK1 to LPS perception in rice. Using OsCERK1-knockout mutants (oscerk1), we evaluated hydrogen peroxide (H2 O2 ) production and gene expression after LPS treatment. We also examined the LPS response in knockout mutants for the B-lectin SD1-RLK genes in rice and for all LysM-protein genes in Arabidopsis. Compared with wild-type rice cells, LPS responses in oscerk1 cells were mostly diminished. By contrast, rice lines mutated in either of three B-lectin SD1-RLK genes and Arabidopsis lines mutated in the LysM-protein genes responded normally to LPS. From these results, we conclude that OsCERK1 is an LPS receptor/co-receptor and that the LPS perception systems of rice and Arabidopsis are significantly different.


Asunto(s)
Lipopolisacáridos/farmacología , Oryza/inmunología , Inmunidad de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Oryza/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo
15.
New Phytol ; 214(4): 1440-1446, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28369864

RESUMEN

The rice lysin-motif (LysM) receptor-like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short-chain chitin oligomers (Myc-COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca2+ ) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS-YC2.60 was used to monitor nuclear Ca2+ signaling following root treatment with either crude fungal exudates or purified Myc-COs. Compared with wild-type rice, Ca2+ spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor-like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc-COs. These findings provide direct evidence that the bi-functional OsCERK1 plays a central role in perceiving short-chain Myc-CO signals and activating the downstream conserved symbiotic signal transduction pathway.


Asunto(s)
Quitina/metabolismo , Micorrizas/metabolismo , Oryza/microbiología , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Calcio/metabolismo , Técnicas de Inactivación de Genes , Mutación , Micorrizas/fisiología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
16.
Curr Med Chem ; 24(36): 3980-3986, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-28003004

RESUMEN

Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice.


Asunto(s)
Quitina/química , Hongos/metabolismo , Proteínas de Plantas/química , Proteínas Serina-Treonina Quinasas/química , Arabidopsis/metabolismo , Quitina/metabolismo , Quitina/farmacología , Inmunidad Innata/efectos de los fármacos , Oryza/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 6: 32537, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581373

RESUMEN

Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature.


Asunto(s)
Oryza/inmunología , Inmunidad de la Planta , Hojas de la Planta/inmunología , Metabolismo Secundario/inmunología , Aminoácidos/química , Animales , Ácidos Grasos/química , Herbivoria/fisiología , Lepidópteros/efectos de los fármacos , Lepidópteros/patogenicidad , Lepidópteros/fisiología , Oryza/metabolismo , Oryza/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Saliva/química
18.
EMBO J ; 35(22): 2468-2483, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27679653

RESUMEN

Perception of microbe-associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen-activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho-signaling transduction pathway from PRR-mediated pathogen recognition to MAPK activation in plants. We found that the receptor-like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1-LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin-induced MAPK activation and disease resistance to Alternaria brassicicola PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin-induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Quitina/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
19.
J Exp Bot ; 67(19): 5615-5629, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27605715

RESUMEN

Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Germinación/fisiología , Glucanos/metabolismo , Semillas/crecimiento & desarrollo , Xilanos/metabolismo , Xilosidasas/fisiología , Arabidopsis/enzimología , Arabidopsis/fisiología , Pared Celular/fisiología , Perfilación de la Expresión Génica , Latencia en las Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/metabolismo , Xilosidasas/metabolismo
20.
Plant Cell Physiol ; 57(11): 2283-2290, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27519312

RESUMEN

In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition.


Asunto(s)
Micorrizas/fisiología , Oryza/enzimología , Oryza/microbiología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Simbiosis , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas , Prueba de Complementación Genética , Lotus/metabolismo , Mutación/genética , Oryza/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Proteínas Quinasas/genética , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...