Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 185(3): 902-913, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793911

RESUMEN

Strigolactones (SLs), first identified as germination stimulants for root parasitic weeds, act as endogenous phytohormones regulating shoot branching and as root-derived signal molecules mediating symbiotic communications in the rhizosphere. Canonical SLs typically have an ABCD ring system and can be classified into orobanchol- and strigol-type based on the C-ring stereochemistry. Their simplest structures are 4-deoxyorobanchol (4DO) and 5-deoxystrigol (5DS), respectively. Diverse canonical SLs are chemically modified with one or more hydroxy or acetoxy groups introduced into the A- and/or B-ring of these simplest structures, but the biochemical mechanisms behind this structural diversity remain largely unexplored. Sorgomol in sorghum (Sorghum bicolor [L.] Moench) is a strigol-type SL with a hydroxy group at C-9 of 5DS. In this study, we characterized sorgomol synthase. Microsomal fractions prepared from a high-sorgomol-producing cultivar of sorghum, Sudax, were shown to convert 5DS to sorgomol. A comparative transcriptome analysis identified SbCYP728B subfamily as candidate genes encoding sorgomol synthase. Recombinant SbCYP728B35 catalyzed the conversion of 5DS to sorgomol in vitro. Substrate specificity revealed that the C-8bS configuration in the C-ring of 5DS stereoisomers was essential for this reaction. The overexpression of SbCYP728B35 in Lotus japonicus hairy roots, which produce 5DS as an endogenous SL, also resulted in the conversion of 5DS to sorgomol. Furthermore, SbCYP728B35 expression was not detected in nonsorgomol-producing cultivar, Abu70, suggesting that this gene is responsible for sorgomol production in sorghum. Identification of the mechanism modifying parental 5DS of strigol-type SLs provides insights on how plants biosynthesize diverse SLs.


Asunto(s)
Lactonas/metabolismo , Sorghum/metabolismo , Estereoisomerismo
2.
Planta ; 251(5): 97, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32306106

RESUMEN

MAIN CONCLUSION: CYP722C from cotton, a homolog of the enzyme involved in orobanchol synthesis in cowpea and tomato, catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Strigolactones (SLs) are important phytohormones with roles in the regulation of plant growth and development. These compounds also function as signaling molecules in the rhizosphere by interacting with beneficial arbuscular mycorrhizal fungi and harmful root parasitic plants. Canonical SLs, such as 5-deoxystrigol (5DS), consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Although it is known that 5DS biosynthesis begins with carlactonoic acid (CLA) derived from ß-carotene, the enzyme that catalyzes the conversion of CLA remains elusive. Recently, we identified cytochrome P450 (CYP) CYP722C as the enzyme that catalyzes direct conversion of CLA to orobanchol in cowpea and tomato (Wakabayashi et al., Sci Adv 5:eaax9067, 2019). Orobanchol has a different C-ring configuration from that of 5DS. The present study aimed to characterize the homologous gene, designated GaCYP722C, from cotton (Gossypium arboreum) to examine whether this gene is involved in 5DS biosynthesis. Expression of GaCYP722C was upregulated under phosphate starvation, which is an SL-producing condition. Recombinant GaCYP722C was expressed in a baculovirus-insect cell expression system and was found to catalyze the conversion of CLA to 5DS but not to 4-deoxyorobanchol. These results strongly suggest that GaCYP722C from cotton is a 5DS synthase and that CYP722C is the crucial CYP subfamily involved in the generation of canonical SLs, irrespective of the different C-ring configurations.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Gossypium/enzimología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Gossypium/genética , Gossypium/crecimiento & desarrollo , Lactonas/química , Espectrometría de Masas , Fosfatos/deficiencia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno/metabolismo
3.
J Exp Bot ; 69(9): 2305-2318, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29294064

RESUMEN

Strigolactones (SLs), comprising compounds with diverse but related chemical structures, are determinant signals in elicitation of germination in root parasitic Orobanchaceae and in mycorrhization in plants. Further, SLs are a novel class of plant hormones that regulate root and shoot architecture. Dissecting common and divergent biosynthetic pathways of SLs may provide avenues for modulating their production in planta. Biosynthesis of SLs in various SL-producing plant species was inhibited by fluridone, a phytoene desaturase inhibitor. The plausible biosynthetic precursors of SLs were exogenously applied to plants, and their conversion to canonical and non-canonical SLs was analysed using liquid chromatography-tandem mass spectrometry. The conversion of carlactone (CL) to carlactonoic acid (CLA) was a common reaction in all investigated plants. Sorghum converted CLA to 5-deoxystrigol (5-DS) and sorgomol, and 5-DS to sorgomol. One sorgomol-producing cotton cultivar had the same SL profile as sorghum in the feeding experiments. Another cotton cultivar converted CLA to 5-DS, strigol, and strigyl acetate. Further, 5-DS was converted to strigol and strigyl acetate. Moonseed converted CLA to strigol, but not to 5-DS. The plant did not convert 5-DS to strigol, suggesting that 5-DS is not a precursor of strigol in moonseed. Similarly, 4-deoxyorobanchol was not a precursor of orobanchol in cowpea. Further, sunflower converted CLA to methyl carlactonoate and heliolactone. These results indicated that the biosynthetic pathways of hydroxy SLs do not necessarily involve their respective deoxy SL precursors.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Vías Biosintéticas , Gossypium/metabolismo , Helianthus/metabolismo , Menispermum/metabolismo , Sorghum/metabolismo , Especificidad de la Especie , Trifolium/metabolismo , Vigna/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA