Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 459: 114770, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-37984522

RESUMEN

A theory has been posited that microscale learning, which involves short intervals of a few seconds during explicit motor skill learning, considerably enhances performance. This phenomenon correlates with diminished beta-band activity in the frontal and parietal regions. However, there is a lack of neurophysiological studies regarding the relationship between microscale learning and implicit motor skill learning. In the present study, we aimed to determine the effects of transcranial alternating current stimulation (tACS) during short rest periods on microscale learning in an implicit motor task. We investigated the effects of 20-Hz ß-tACS delivered during short rest periods while participants performed an implicit motor task. In Experiments 1 and 2, ß-tACS targeted the right dorsolateral prefrontal cortex and the right frontoparietal network, respectively. The participants performed a finger-tapping task using their nondominant left hand, and microscale learning was separately analyzed for micro-online gains (MOnGs) and micro-offline gains (MOffGs). Contrary to our expectations, ß-tACS exhibited no statistically significant effects on MOnGs or MOffGs in either Experiment 1 or Experiment 2. In addition, microscale learning during the performance of the implicit motor task was improved by MOffGs in the early learning phase and by MOnGs in the late learning phase. These results revealed that the stimulation protocol employed in this study did not affect microscale learning, indicating a novel aspect of microscale learning in implicit motor tasks. This is the first study to examine microscale learning in implicit motor tasks and may provide baseline information that will be useful in future studies.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Motora/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Corteza Prefontal Dorsolateral
2.
Behav Brain Res ; 437: 114110, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36096458

RESUMEN

Various situations in our everyday life call for response inhibition, mechanisms deputed to outright stop an ongoing course of action. This function reportedly involves the activity of the right intraparietal sulcus (rIPS). This study aimed to determine whether transcranial direct current stimulation (tDCS) intervention to the rIPS alters response inhibition. We investigated 15 healthy adults performing a stop signal task before and after tDCS intervention. We applied tDCS with 1.5 mA to the rIPS directly above (P4) and the left supraorbital area for 20 min. The stimulation conditions involved Anodal, cathodal, and pseudo-stimulation. Each participant performed a stop signal task under all stimulation conditions. The changes in response inhibition function were evaluated by comparing the stop signal reaction times (SSRT) before and after the tDCS intervention. Under the Anodal condition, SSRT was significantly shorter after than before the intervention (p = 0.014). Under the Anodal and Cathodal conditions, we could observe a significantly positive correlation between the SSRT before the tDCS intervention and the difference in SSRT before and after tDCS intervention (Anodal condition: r = 0.823, p < 0.001; Cathodal condition: r = 0.831, p < 0.001). No such correlation could be found under the Sham condition. In summary, this study demonstrated that Anodal-tDCS intervention for rIPS improves response-inhibitory function and the stimulus effect depends on the response-inhibitory function of the participant prior to stimulation.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Adulto , Lóbulo Parietal , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...