Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(25): 6628-6633, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38888265

RESUMEN

Metal-organic frameworks (MOFs) exhibit high adsorption and catalytic activities for various gas species. Because gas adsorption can cause a temperature increase in the MOF, which decreases the capacity and adsorption rate, a strict evaluation of its effect on the thermal conductivity of MOFs is essential. In this study, the thermal conductivity measurement of the MOF under water vapor adsorption was performed using an oriented film of copper tetrakis(4-carboxyphenyl)porphyrin (Cu-TCPP) MOF. A recently developed bidirectional 3ω method enabled the anisotropic thermal conductivity measurement of layered Cu-TCPP while maintaining its ordered structure. The water adsorption was found to increase the thermal conductivity in both in-plane and cross-plane directions with different trends and magnitudes, owing to the structural anisotropy. Molecular dynamics simulations suggest that additional vibrational modes provided by the adsorbed water molecules were the reason for the thermal conductivity enhancement.

2.
J Chem Phys ; 156(24): 244502, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35778103

RESUMEN

Quantifying the correlation between the complex structures of amorphous materials and their physical properties has been a longstanding problem in materials science. In amorphous Si, a representative covalent amorphous solid, the presence of a medium-range order (MRO) has been intensively discussed. However, the specific atomic arrangement corresponding to the MRO and its relationship with physical properties, such as thermal conductivity, remains elusive. We solved this problem by combining topological data analysis, machine learning, and molecular dynamics simulations. Using persistent homology, we constructed a topological descriptor that can predict thermal conductivity. Moreover, from the inverse analysis of the descriptor, we determined the typical ring features correlated with both the thermal conductivity and MRO. The results could provide an avenue for controlling material characteristics through the topology of the nanostructures.

3.
Rev Sci Instrum ; 92(3): 034902, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820006

RESUMEN

Organic thin film materials with molecular ordering are gaining attention as they exhibit semiconductor characteristics. When using them for electronics, the thermal management becomes important, where heat dissipation is directional owing to the anisotropic thermal conductivity arising from the molecular ordering. However, it is difficult to evaluate the anisotropy by simultaneously measuring in-plane and cross-plane thermal conductivities of the film on a substrate because the film is typically as thin as tens to hundreds of nanometers and its in-plane thermal conductivity is low. Here, we develop a novel bidirectional 3ω system that measures the anisotropic thermal conductivity of thin films by patterning two metal wires with different widths and preparing the films on top and extracting the in-plane and cross-plane thermal conductivities using the difference in their sensitivities to the metal-wire width. Using the developed system, the thermal conductivity of spin-coated poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with thickness of 70 nm was successfully measured. The measured in-plane thermal conductivity of PEDOT:PSS film was as high as 2.9 W m-1 K-1 presumably due to the high structural ordering, giving an anisotropy of 10. The calculations of measurement sensitivity to the film thickness and thermal conductivities suggest that the device can be applied to much thinner films by utilizing metal wires with a smaller width.

4.
ACS Appl Mater Interfaces ; 11(40): 37295-37301, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525013

RESUMEN

Thermal boundary conductance between graphite and metal plays an important role in developing thermally conductive composites and contacts for thermal management. On the basis of the premise that the thermal boundary conductance (TBC) correlates with interfacial bonding strength, we conducted triazine-based molecular-bonding process to improve interfacial adhesion forces between a-axis of highly oriented pyrolytic graphite and aluminum. The surface coverage of molecular bonding at the interface is estimated by the X-ray photoelectron spectroscopy and thermal boundary conductance is measured by the time-domain thermoreflectance method. It is found that the TBC is directly proportional to the surface coverage of covalently bonded triazine linkers, with the proportionality constant for their increment rates being about unity. The experimental finding is supported by the corresponding simulation using the atomic Green's function method, which exhibits the same linear dependence on the surface coverage.

5.
Nano Lett ; 19(8): 4845-4851, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30798600

RESUMEN

The successful isolation of single layers from two-dimensional (2D) van der Waals (vdW)-layered materials has opened new frontiers in condensed matter physics and materials science. Their discovery and unique properties laid the foundation for exploring 1D counterparts. However, the isolation of 1D vdW-wired materials has thus far remained a challenge, and effective techniques are demanded. Here we report the facile synthesis of isolated transition-metal monochalcogenide MoTe nanowires by using carbon nanotubes (CNTs) as molds. Individual nanowires are perfectly separated by CNTs with a minimal interaction, enabling detailed characterization of the single wires. Transmission electron microscopy revealed unusual torsional motion of MoTe nanowires inside CNTs. Confinement of 1D vdW-wired materials to the nanotest tubes might open up possibilities for exploring unprecedented properties of the nanowires and their potential applications such as electromechanical switching devices.

6.
Phys Rev Lett ; 120(4): 045901, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29437417

RESUMEN

Temperature-dependent thermal conductivity of epitaxial silicon nanocrystalline (SiNC) structures composed of nanometer-sized grains separated by ultrathin silicon-oxide (SiO_{2}) films (∼0.3 nm) is measured by the time domain thermoreflectance technique in the range from 50 to 300 K. The thermal conductivity of SiNC structures with a grain size of 3 and 5 nm is anomalously low at the entire temperature range, significantly below the values of bulk amorphous Si and SiO_{2}. The phonon gas kinetic model, with intrinsic transport properties obtained by first-principles-based anharmonic lattice dynamics and phonon transmittance across ultrathin SiO_{2} films obtained by atomistic Green's function, reproduces the measured thermal conductivity without any fitting parameters. The analysis reveals that mean free paths of acoustic phonons in the SiNC structures are equivalent or even below half the phonon wavelength, i.e., the minimum thermal conductivity scenario. The result demonstrates that the nanostructures with extremely small length scales and a controlled interface can give rise to ultimate classical confinement of thermal phonon propagation.

7.
Nat Mater ; 16(9): 892-897, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28759031

RESUMEN

The potential impact of encapsulated molecules on the thermal properties of individual carbon nanotubes (CNTs) has been an important open question since the first reports of the strong modulation of electrical properties in 2002. However, thermal property modulation has not been demonstrated experimentally because of the difficulty of realizing CNT-encapsulated molecules as part of thermal transport microstructures. Here we develop a nanofabrication strategy that enables measurement of the impact of encapsulation on the thermal conductivity (κ) and thermopower (S) of single CNT bundles that encapsulate C 60, Gd@C 82 and Er 2@C 82. Encapsulation causes 35-55% suppression in κ and approximately 40% enhancement in S compared with the properties of hollow CNTs at room temperature. Measurements of temperature dependence from 40 to 320 K demonstrate a shift of the peak in the κ to lower temperature. The data are consistent with simulations accounting for the interaction between CNTs and encapsulated fullerenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...