Asunto(s)
Carcinoma de Células Escamosas , Oro/química , Neoplasias de Cabeza y Cuello , Hipertermia Inducida/métodos , Nanocáscaras/química , Fototerapia/métodos , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , RatonesRESUMEN
BACKGROUND AND OBJECTIVE: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP reporter gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells and muticell U87 glioma spheroids. MATERIALS AND METHODS: U251 monolayers or U87 spheroids were incubated in AlPcS(2a) and non-viral vector polyplexes for 18 hours. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched polyethylenimine (bPEI), or protamine sulfate (PS), were used with the plasmid constructs GFP/PTEN or GFP. RESULTS: PS/GFP polyplexes were much less toxic to the glioma cells compared to bPEI/GFP polyplexes but were highly inefficient at gene transfection if used alone. PCI resulted in a 5- to 10-fold increase in GFP protein expression compared to controls. PCI-bPEI/PTEN or PCI-PS/PTEN transfection of either U251 monolayers or U87 spheroids significantly inhibited their growth. but had no effect on MCF-7 cells containing a wild-type PTEN gene. In addition PCI-GFP transfection of gliomas cells had no effect on their growth pattern. CONCLUSIONS: Collectively, the results suggest that AlPcS(2a) -mediated PCI can be used to enhance cell growth inhibition via transfection of tumor suppressor genes in glioma cells containing mutant PTEN genes.
Asunto(s)
Terapia Genética/métodos , Glioblastoma/terapia , Láseres de Semiconductores/uso terapéutico , Fosfohidrolasa PTEN/genética , Fotoquimioterapia , Transfección/métodos , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Glioblastoma/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Indoles/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Polietileneimina , ProtaminasRESUMEN
Breast-conservation surgery (BCS) is now utilized in patients with stage I and II invasive breast cancer. However, positive surgical margins are associated with recurrence, and therefore some form of localized postoperative therapy (radiation/chemotherapy) is necessary to eliminate remaining cancer cells. Existing modalities have significant treatment-limiting side effects; therefore, alternative forms of localized therapy need to be explored. We studied the ex vivo effects of photochemical internalization (PCI) using 4 chemotherapeutic agents: cisplatin, cisplatin analog [D prostanoid, DP], doxorubicin, and bleomycin) on 3 breast cancer cell lines: MCF-7, MDA-MB-435, and MDA-MB-231. Illumination was carried out using a 670-nm diode laser at 5 mW/cm2 following incubation in the photosensitizer with aluminum phthalocyanine disulfonate. Toxicity was investigated using colony-forming assays and the mechanism of cell death was determined using Annexin flow-cytometry. We found that toxicity of DP and bleomycin was significantly enhanced by PCI compared with drug alone but was unchanged for cisplatin and doxorubicin. PCI treatment caused a decrease in the percentage of viable cells, predominantly by enhancing apoptosis. The action was synergistic across all 3 cell lines tested for DP and bleomycin. Thus, with appropriate delivery devices and choice of chemotherapeutic agents, PCI holds the promise of enhancing tumor cell toxicity surrounding the cavity of BCS resection sites and thereby decreasing local recurrence.
Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Bleomicina/farmacología , Bleomicina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Láseres de Semiconductores , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéuticoRESUMEN
We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS(2a)-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS(2a) (PDT effect), bleomycin (chemotherapy effect), or AlPcS(2a)+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5 J/cm(2) @ 5 mW/cm(2)) AlPcS(2a)-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations-incubation of F98 cells in 0.1 µg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5 J/cm(2) together with 0.25 µg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS(2a)-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas.