Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Elife ; 122023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610090

RESUMEN

Pancreatic islets are three-dimensional cell aggregates consisting of unique cellular composition, cell-to-cell contacts, and interactions with blood vessels. Cell aggregation is essential for islet endocrine function; however, it remains unclear how developing islets establish aggregation. By combining genetic animal models, imaging tools, and gene expression profiling, we demonstrate that islet aggregation is regulated by extracellular matrix signaling and cell-cell adhesion. Islet endocrine cell-specific inactivation of extracellular matrix receptor integrin ß1 disrupted blood vessel interactions but promoted cell-cell adhesion and the formation of larger islets. In contrast, ablation of cell-cell adhesion molecule α-catenin promoted blood vessel interactions yet compromised islet clustering. Simultaneous removal of integrin ß1 and α-catenin disrupts islet aggregation and the endocrine cell maturation process, demonstrating that establishment of islet aggregates is essential for functional maturation. Our study provides new insights into understanding the fundamental self-organizing mechanism for islet aggregation, architecture, and functional maturation.


Asunto(s)
Matriz Extracelular , Integrina beta1 , Animales , Adhesión Celular , alfa Catenina , Agregación Celular
3.
Cell Transplant ; 32: 9636897231182497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37345228

RESUMEN

"Firefly rats" ubiquitously express the luciferase reporter gene under the control of constitutively active ROSA26 promoter in inbred Lewis rats. Due to the minimal immunogenicity of luciferase, wide applications of Firefly rats have been reported in solid organ/cell transplantation studies for in vivo imaging, permitting quantitative and non-invasive tracking of the transplanted graft. ROSA26 is a non-coding gene and generally does not affect the expression of other endogenous genes. However, the effect of ubiquitous luciferase expression on islet morphology and function has not been thoroughly investigated, which is critical for the use of Firefly rats as islet donors in islet transplantation studies. Accordingly, in vivo glucose homeostasis (i.e., islet function in the native pancreas) was compared between age-matched luciferase-expressing Firefly rats and non-luciferase-expressing rats. In vivo assessments demonstrated no statistical difference between these rats in non-fasting blood glucose levels, intraperitoneal glucose tolerance tests, and glucose-stimulated serum C-peptide levels. Furthermore, islets were isolated from both rats to compare the morphology, function, and metabolism in vitro. Isolated islets from both rats exhibited similar in vitro characteristics in post-isolation islet yield, islet size, beta cell populations, insulin content per islet, oxygen consumption rate, and glucose-stimulated insulin secretion. In conclusion, ubiquitous luciferase expression in Firefly rats does not affect their islet morphology, metabolism, and function; this finding is critical and enables the use of isolated islets from Firefly rats for the dual assessment of islet graft function and bioluminescence imaging of islet grafts.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratas , Animales , Luciérnagas/metabolismo , Ratas Endogámicas Lew , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Luciferasas , Glucemia/metabolismo
4.
Front Bioeng Biotechnol ; 11: 1144209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970620

RESUMEN

The transplantation of pancreatic endocrine islet cells from cadaveric donors is a promising treatment for type 1 diabetes (T1D), which is a chronic autoimmune disease that affects approximately nine million people worldwide. However, the demand for donor islets outstrips supply. This problem could be solved by differentiating stem and progenitor cells to islet cells. However, many current culture methods used to coax stem and progenitor cells to differentiate into pancreatic endocrine islet cells require Matrigel, a matrix composed of many extracellular matrix (ECM) proteins secreted from a mouse sarcoma cell line. The undefined nature of Matrigel makes it difficult to determine which factors drive stem and progenitor cell differentiation and maturation. Additionally, it is difficult to control the mechanical properties of Matrigel without altering its chemical composition. To address these shortcomings of Matrigel, we engineered defined recombinant proteins roughly 41 kDa in size, which contain cell-binding ECM peptides derived from fibronectin (ELYAVTGRGDSPASSAPIA) or laminin alpha 3 (PPFLMLLKGSTR). The engineered proteins form hydrogels through association of terminal leucine zipper domains derived from rat cartilage oligomeric matrix protein. The zipper domains flank elastin-like polypeptides whose lower critical solution temperature (LCST) behavior enables protein purification through thermal cycling. Rheological measurements show that a 2% w/v gel of the engineered proteins display material behavior comparable to a Matrigel/methylcellulose-based culture system previously reported by our group to support the growth of pancreatic ductal progenitor cells. We tested whether our protein hydrogels in 3D culture could derive endocrine and endocrine progenitor cells from dissociated pancreatic cells of young (1-week-old) mice. We found that both protein hydrogels favored growth of endocrine and endocrine progenitor cells, in contrast to Matrigel-based culture. Because the protein hydrogels described here can be further tuned with respect to mechanical and chemical properties, they provide new tools for mechanistic study of endocrine cell differentiation and maturation.

5.
Diabetes ; 72(5): 575-589, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607262

RESUMEN

The molecular and functional heterogeneity of pancreatic ß-cells is well recognized, but the underlying mechanisms remain unclear. Pancreatic islets harbor a subset of ß-cells that co-express tyrosine hydroxylase (TH), an enzyme involved in synthesis of catecholamines that repress insulin secretion. Restriction of the TH+ ß-cells within islets is essential for appropriate function in mice, such that a higher proportion of these cells corresponds to reduced insulin secretion. Here, we use these cells as a model to dissect the developmental control of ß-cell heterogeneity. We define the specific molecular and metabolic characteristics of TH+ ß-cells and show differences in their developmental restriction in mice and humans. We show that TH expression in ß-cells is restricted by DNA methylation during ß-cell differentiation. Ablation of de novo DNA methyltransferase Dnmt3a in the embryonic progenitors results in a dramatic increase in the proportion of TH+ ß-cells, whereas ß-cell-specific ablation of Dnmt3a does not. We demonstrate that maintenance of Th promoter methylation is essential for its continued restriction in postnatal ß-cells. Loss of Th promoter methylation in response to chronic overnutrition increases the number of TH+ ß-cells, corresponding to impaired ß-cell function. These results reveal a regulatory role of DNA methylation in determining ß-cell heterogeneity.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Tirosina 3-Monooxigenasa , Animales , Humanos , Ratones , Metilación de ADN , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Regiones Promotoras Genéticas/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
6.
Methods Mol Biol ; 2155: 193-200, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474878

RESUMEN

The pancreas is composed of different cellular populations, organized into distinct functional units, including acinar clusters, islets of Langerhans, and the ductal system. As a result of research into diabetes, several optical techniques have been developed for the three-dimensional visualization of islet populations, so as to better understand their anatomical characteristics. These approaches are largely reliant on three-dimensional whole-mount immunofluorescence staining. In this chapter, we review a revised whole mount immunofluorescence staining method for studying adult pancreatic islet morphology. This method uses smaller samples and combines the blocking and permeabilization steps. This reduces the time needed, relative to existing protocols; the method is compatible with regular confocal microscopy as well.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Páncreas/citología , Páncreas/metabolismo , Animales , Disección , Técnica del Anticuerpo Fluorescente/métodos , Imagenología Tridimensional , Ratones , Microscopía Confocal/métodos
7.
Nat Commun ; 11(1): 2082, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350257

RESUMEN

Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited.


Asunto(s)
Células Endocrinas/citología , Células Endocrinas/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Histona Demetilasas/metabolismo , Islotes Pancreáticos/citología , Transducción de Señal , Tretinoina/metabolismo , Adulto , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Células Endocrinas/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/embriología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Adulto Joven
8.
iScience ; 21: 681-694, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31733514

RESUMEN

Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.

9.
PLoS One ; 14(9): e0221810, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490946

RESUMEN

The five-year survival rate of patients diagnosed with advanced pancreatic ductal adenocarcinoma (PDAC) has remained static at <5% despite decades of research. With the exception of erlotinib, clinical trials have failed to demonstrate the benefit of any targeted therapy for PDAC despite promising results in preclinical animal studies. The development of more refined mouse models of PDAC which recapitulate the carcinogenic progression from non-neoplastic, adult exocrine subsets of pancreatic cells to invasive carcinoma in humans are needed to facilitate the accurate translation of therapies to the clinic. To study acinar cell-derived PDAC initiation, we developed a genetically engineered mouse model of PDAC, called KPT, utilizing a tamoxifen-inducible Cre recombinase/estrogen receptor (ESR1) fusion protein knocked into the Ptf1a locus to activate the expression of oncogenic KrasG12D and Trp53R270H alleles in mature pancreatic acinar cells. Oncogene-expressing acinar cells underwent acinar-to-ductal metaplasia, and formed pancreatic intraepithelial neoplasia lesions following the induction of oncogene expression. After a defined latency period, oncogene-expressing acinar cells initiated the formation of highly differentiated and fibrotic tumors, which metastasized to the lungs and liver. Whole-transcriptome analysis of microdissected regions of acinar-to-ductal metaplasia and histological validation experiments demonstrated that regions of acinar-to-ductal metaplasia are characterized by the deposition of the extracellular matrix component hyaluronan. These results indicate that acinar cells expressing KrasG12D and Trp53R270H can initiate PDAC development in young adult mice and implicate hyaluronan deposition in the formation of the earliest characterized PDAC precursor lesions (and the progression of pancreatic cancer). Further studies are necessary to provide a comprehensive characterization of PDAC progression and treatment response in KPT mice and to investigate whether the KPT model could be used as a tool to study translational aspects of acinar cell-derived PDAC tumorigenesis.


Asunto(s)
Células Acinares/patología , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Oncogenes/genética , Páncreas/patología , Alelos , Animales , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Metaplasia/genética , Metaplasia/patología , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética
10.
Sci Rep ; 8(1): 13451, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194315

RESUMEN

Cadherin-mediated cell-cell adhesion plays an important role in organ development and changes in cadherin expression are often linked to morphogenetic and pathogenic events. Cadherins interact with other intracellular components to form adherens junctions (AJs) and provide mechanical attachments between adjacent cells. E-cadherin (Cdh1) represents an integral component of these intercellular junctions. To elucidate the function of E-cadherin in the developing pancreas, we generated and studied pancreas-specific Cdh1-knockout (Cdh1ΔPan/ΔPan) mice. Cdh1ΔPan/ΔPan mice exhibit normal body size at birth, but fail to gain weight and become hypoglycemic soon afterward. We found that E-cadherin is not required for the establishment of apical-basal polarity or pancreatic exocrine cell identity at birth. However, four days after birth, the pancreata of Cdh1ΔPan/ΔPan mutants display progressive deterioration of exocrine architecture and dysregulation of Wnt and YAP signaling. At this time point, the acinar cells of Cdh1ΔPan/ΔPan mutants begin to exhibit ductal phenotypes, suggesting acinar-to-ductal metaplasia (ADM) in the E-cadherin-deficient pancreas. Our findings demonstrate that E-cadherin plays an integral role in the maintenance of exocrine architecture and regulation of homeostatic signaling. The present study provides insights into the involvement of cadherin-mediated cell-cell adhesion in pathogenic conditions such as pancreatitis or pancreatic cancer.


Asunto(s)
Cadherinas/metabolismo , Páncreas Exocrino/crecimiento & desarrollo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cadherinas/genética , Adhesión Celular/genética , Proteínas de Ciclo Celular , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Señalizadoras YAP
11.
Stem Cell Res Ther ; 8(1): 216, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962663

RESUMEN

BACKGROUND: To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. METHODS: Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. RESULTS: The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. CONCLUSIONS: Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Andamios del Tejido/química , Línea Celular , Linaje de la Célula , Módulo de Elasticidad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nanofibras/química , Cultivo Primario de Células/métodos
12.
Cell Rep ; 14(2): 169-79, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748698

RESUMEN

During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are pleomorphic and rearrange frequently; additionally, they largely remain in the outer cell compartment even after mitosis. These cell behaviors and pancreas branching depend on cell contacts with the basement membrane, which induce actomyosin cytoskeleton remodeling via integrin-mediated activation of FAK/Src signaling. We show that integrin signaling reduces E-cadherin-mediated cell-cell adhesion in outer cells and provide genetic evidence that this regulation is necessary for initiation of branching. Our study suggests that regulation of cell motility and adhesion by local niche cues initiates pancreas branching morphogenesis.


Asunto(s)
Cadherinas/metabolismo , Páncreas/metabolismo , Diferenciación Celular , Morfogénesis , Transducción de Señal
13.
Stem Cell Res ; 16(1): 40-53, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26691820

RESUMEN

Progenitor cells in the adult pancreas are potential sources of endocrine beta cells for treating type 1 diabetes. Previously, we identified tri-potent progenitor cells in the adult (2-4month-old) murine pancreas that were capable of self-renewal and differentiation into duct, acinar, and endocrine cells in vitro. These progenitor cells were named pancreatic colony-forming units (PCFUs). However, because PCFUs are a minor population in the pancreas (~1%) they are difficult to study. To enrich PCFUs, strategies using cell-surface marker analyses and fluorescence-activated cell sorting were developed. We found that CD133(high)CD71(low) cells, but not other cell populations, enriched PCFUs by up to 30 fold compared to the unsorted cells. CD133(high)CD71(low) cells generated primary, secondary, and subsequent colonies when serially re-plated in Matrigel-containing cultures, suggesting self-renewal abilities. In the presence of a laminin hydrogel, CD133(high)CD71(low) cells gave rise to colonies that contained duct, acinar, and Insulin(+)Glucagon(+) double-hormonal endocrine cells. Colonies from the laminin hydrogel culture were implanted into diabetic mice, and five weeks later duct, acinar, and Insulin(+)Glucagon(-) cells were detected in the grafts, demonstrating tri-lineage differentiation potential of CD133(high)CD71(low) cells. These CD133(high)CD71(low) cells will enable future studies of putative adult pancreas stem cells in vivo.


Asunto(s)
Antígeno AC133 , Envejecimiento/fisiología , Antígenos CD/metabolismo , Membrana Celular/metabolismo , Ensayo de Unidades Formadoras de Colonias , Células Madre Multipotentes/citología , Páncreas/citología , Receptores de Transferrina/metabolismo , Células Acinares/citología , Animales , Autorrenovación de las Células , Glucagón/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Ratones Endogámicos C57BL , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/ultraestructura , Conductos Pancreáticos/citología , Adhesión en Parafina , Análisis de Secuencia de ARN , Fijación del Tejido
14.
Cell Rep ; 13(2): 326-36, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26440894

RESUMEN

The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Intestinos/citología , Factor de Transcripción SOX9/genética , Transactivadores/genética , Animales , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Páncreas/citología , Páncreas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transactivadores/metabolismo , Activación Transcripcional
15.
Methods Mol Biol ; 1210: 229-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25173172

RESUMEN

Pancreas development is a complex and dynamic process orchestrated by cellular and molecular events, including morphogenesis and cell differentiation. As a result of recent explorations into possible cell-therapy-based treatments for diabetes, researchers have made significant progress in deciphering the developmental program of pancreas formation. In vitro pancreas organ culture systems provide a valuable tool for exploring the mechanisms of gene regulation, cellular behaviors, and cell differentiation. In this chapter, we review three common techniques for culturing embryonic pancreas explants. Each technique is suitable for different applications. Specifically, culturing embryonic pancreas on culture inserts provides an excellent platform to test the effects of chemical compounds. Conversely, when the embryonic pancreas is cultured in fibronectin-coated glass microwells, the system provides unique culture conditions to monitor organ growth and cellular dynamic events. Lastly, when the embryonic pancreas is embedded in Matrigel, organogenesis can be studied in a three-dimensional environment instead of limiting the analysis to one plane.


Asunto(s)
Organogénesis , Páncreas/citología , Técnicas de Cultivo de Tejidos , Animales , Ratones
16.
Proc Natl Acad Sci U S A ; 110(47): E4456-64, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191021

RESUMEN

Lung branching morphogenesis is a highly orchestrated process that gives rise to the complex network of gas-exchanging units in the adult lung. Intricate regulation of signaling pathways, transcription factors, and epithelial-mesenchymal cross-talk are critical to ensuring branching morphogenesis occurs properly. Here, we describe a role for the transcription factor Sox9 during lung branching morphogenesis. Sox9 is expressed at the distal tips of the branching epithelium in a highly dynamic manner as branching occurs and is down-regulated starting at embryonic day 16.5, concurrent with the onset of terminal differentiation of type 1 and type 2 alveolar cells. Using epithelial-specific genetic loss- and gain-of-function approaches, our results demonstrate that Sox9 controls multiple aspects of lung branching. Fine regulation of Sox9 levels is required to balance proliferation and differentiation of epithelial tip progenitor cells, and loss of Sox9 leads to direct and indirect cellular defects including extracellular matrix defects, cytoskeletal disorganization, and aberrant epithelial movement. Our evidence shows that unlike other endoderm-derived epithelial tissues, such as the intestine, Wnt/ß-catenin signaling does not regulate Sox9 expression in the lung. We conclude that Sox9 collectively promotes proper branching morphogenesis by controlling the balance between proliferation and differentiation and regulating the extracellular matrix.


Asunto(s)
Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Pulmón/embriología , Organogénesis/fisiología , Mucosa Respiratoria/metabolismo , Factor de Transcripción SOX9/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Inmunoprecipitación de Cromatina , Doxiciclina/farmacología , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Pulmón/citología , Ratones , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Mucosa Respiratoria/fisiología , Tamoxifeno/farmacología
17.
Annu Rev Cell Dev Biol ; 29: 81-105, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23909279

RESUMEN

The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable ß-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.


Asunto(s)
Organogénesis , Páncreas/citología , Páncreas/embriología , Animales , Diferenciación Celular , Humanos , Páncreas/metabolismo , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 110(10): 3907-12, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431132

RESUMEN

The study of hematopoietic colony-forming units using semisolid culture media has greatly advanced the knowledge of hematopoiesis. Here we report that similar methods can be used to study pancreatic colony-forming units. We have developed two pancreatic colony assays that enable quantitative and functional analyses of progenitor-like cells isolated from dissociated adult (2-4 mo old) murine pancreas. We find that a methylcellulose-based semisolid medium containing Matrigel allows growth of duct-like "Ring/Dense" colonies from a rare (∼1%) population of total pancreatic single cells. With the addition of roof plate-specific spondin 1, a wingless-int agonist, Ring/Dense colony-forming cells can be expanded more than 100,000-fold when serially dissociated and replated in the presence of Matrigel. When cells grown in Matrigel are then transferred to a Matrigel-free semisolid medium with a unique laminin-based hydrogel, some cells grow and differentiate into another type of colony, which we name "Endocrine/Acinar." These Endocrine/Acinar colonies are comprised mostly of endocrine- and acinar-like cells, as ascertained by RNA expression analysis, immunohistochemistry, and electron microscopy. Most Endocrine/Acinar colonies contain beta-like cells that secrete insulin/C-peptide in response to D-glucose and theophylline. These results demonstrate robust self-renewal and differentiation of adult Ring/Dense colony-forming units in vitro and suggest an approach to producing beta-like cells for cell replacement of type 1 diabetes. The methods described, which include microfluidic expression analysis of single cells and colonies, should also advance study of pancreas development and pancreatic progenitor cells.


Asunto(s)
Ensayo de Unidades Formadoras de Colonias/métodos , Páncreas/citología , Células Acinares/citología , Células Acinares/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Colágeno , Medios de Cultivo , Combinación de Medicamentos , Hidrogeles , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Laminina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Proteoglicanos , Vía de Señalización Wnt
19.
PLoS One ; 7(7): e42228, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22860089

RESUMEN

Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/genética , Mesodermo , Músculo Esquelético/patología , Mutación , Factores de Transcripción/genética , Animales , Genes Homeobox , Hibridación in Situ , Ratones , Proteína del Homeodomínio PITX2
20.
Development ; 139(18): 3363-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874919

RESUMEN

All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hígado/embriología , Hígado/metabolismo , Páncreas/embriología , Páncreas/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción SOX9/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Hígado/citología , Ratones , Páncreas/citología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA