RESUMEN
Background: Cough represents a cardinal symptom of acute respiratory tract infections. Generally associated with disease activity, cough holds biomarker potential and might be harnessed for prognosis and personalised treatment decisions. Here, we tested the suitability of cough as a digital biomarker for disease activity in coronavirus disease 2019 (COVID-19) and other lower respiratory tract infections. Methods: We conducted a single-centre, exploratory, observational cohort study on automated cough detection in patients hospitalised for COVID-19 (n=32) and non-COVID-19 pneumonia (n=14) between April and November 2020 at the Cantonal Hospital St Gallen, Switzerland. Cough detection was achieved using smartphone-based audio recordings coupled to an ensemble of convolutional neural networks. Cough levels were correlated to established markers of inflammation and oxygenation. Measurements and main results: Cough frequency was highest upon hospital admission and declined steadily with recovery. There was a characteristic pattern of daily cough fluctuations, with little activity during the night and two coughing peaks during the day. Hourly cough counts were strongly correlated with clinical markers of disease activity and laboratory markers of inflammation, suggesting cough as a surrogate of disease in acute respiratory tract infections. No apparent differences in cough evolution were observed between COVID-19 and non-COVID-19 pneumonia. Conclusions: Automated, quantitative, smartphone-based detection of cough is feasible in hospitalised patients and correlates with disease activity in lower respiratory tract infections. Our approach allows for near real-time telemonitoring of individuals in aerosol isolation. Larger trials are warranted to decipher the use of cough as a digital biomarker for prognosis and tailored treatment in lower respiratory tract infections.
RESUMEN
BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.