Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38866009

RESUMEN

Transcription factors can promote gene expression through activation domains. Whole-genome screens have systematically mapped activation domains in transcription factors but not in non-transcription factor proteins (e.g., chromatin regulators and coactivators). To fill this knowledge gap, we employed the activation domain predictor PADDLE to analyze the proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae. We screened 18,000 predicted activation domains from >800 non-transcription factor genes in both species, confirming that 89% of candidate proteins contain active fragments. Our work enables the annotation of hundreds of nuclear proteins as putative coactivators, many of which have never been ascribed any function in plants. Analysis of peptide sequence compositions reveals how the distribution of key amino acids dictates activity. Finally, we validated short, "universal" activation domains with comparable performance to state-of-the-art activation domains used for genome engineering. Our approach enables the genome-wide discovery and annotation of activation domains that can function across diverse eukaryotes.

2.
Nat Food ; 5(6): 480-490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872016

RESUMEN

Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates which support the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the approximately 200 structurally diverse HMOs at scale has proved difficult. Here we produce a diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high-value and complex HMOs, such as lacto-N-fucopentaose I. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement with potential applications in adult and infant health. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the low-cost and sustainable production of HMOs.


Asunto(s)
Leche Humana , Oligosacáridos , Plantas Modificadas Genéticamente , Oligosacáridos/metabolismo , Humanos , Leche Humana/metabolismo , Leche Humana/química , Plantas Modificadas Genéticamente/genética , Prebióticos , Fotosíntesis
3.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645011

RESUMEN

Rubisco is the primary CO2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO2 concentrations, we inferred enzyme velocity and CO2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.

4.
ACS Synth Biol ; 13(3): 736-744, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412618

RESUMEN

Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.


Asunto(s)
Brassica , Humanos , Brassica/genética , Glucosinolatos/análisis , Culinaria , Productos Agrícolas/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Isotiocianatos/metabolismo
5.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236304

RESUMEN

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Asunto(s)
Pared Celular , Interacciones Huésped-Parásitos , Tumores de Planta , Avispas , Animales , Pared Celular/metabolismo , Avispas/fisiología , Tumores de Planta/parasitología , Quercus/metabolismo , Quercus/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Lignina/metabolismo
6.
Biology (Basel) ; 12(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132331

RESUMEN

Plants possess an innate ability to generate vast amounts of sugar and produce a range of sugar-derived compounds that can be utilized for applications in industry, health, and agriculture. Nucleotide sugars lie at the unique intersection of primary and specialized metabolism, enabling the biosynthesis of numerous molecules ranging from small glycosides to complex polysaccharides. Plants are tolerant to perturbations to their balance of nucleotide sugars, allowing for the overproduction of endogenous nucleotide sugars to push flux towards a particular product without necessitating the re-engineering of upstream pathways. Pathways to produce even non-native nucleotide sugars may be introduced to synthesize entirely novel products. Heterologously expressed glycosyltransferases capable of unique sugar chemistries can further widen the synthetic repertoire of a plant, and transporters can increase the amount of nucleotide sugars available to glycosyltransferases. In this opinion piece, we examine recent successes and potential future uses of engineered nucleotide sugar biosynthetic, transport, and utilization pathways to improve the production of target compounds. Additionally, we highlight current efforts to engineer glycosyltransferases. Ultimately, the robust nature of plant sugar biochemistry renders plants a powerful chassis for the production of target glycoconjugates and glycans.

7.
Front Plant Sci ; 14: 1288826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965014

RESUMEN

Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.

8.
Curr Biol ; 33(24): 5316-5325.e3, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37979578

RESUMEN

The enzyme rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes the majority of biological carbon fixation on Earth. Although the vast majority of rubiscos across the tree of life assemble as homo-oligomers, the globally predominant form I enzyme-found in plants, algae, and cyanobacteria-forms a unique hetero-oligomeric complex. The recent discovery of a homo-oligomeric sister group to form I rubisco (named form I') has filled a key gap in our understanding of the enigmatic origins of the form I clade. However, to elucidate the series of molecular events leading to the evolution of form I rubisco, we must examine more distantly related sibling clades to contextualize the molecular features distinguishing form I and form I' rubiscos. Here, we present a comparative structural study retracing the evolutionary history of rubisco that reveals a complex structural trajectory leading to the ultimate hetero-oligomerization of the form I clade. We structurally characterize the oligomeric states of deep-branching form Iα and I'' rubiscos recently discovered from metagenomes, which represent key evolutionary intermediates preceding the form I clade. We further solve the structure of form I'' rubisco, revealing the molecular determinants that likely primed the enzyme core for the transition from a homo-oligomer to a hetero-oligomer. Our findings yield new insight into the evolutionary trajectory underpinning the adoption and entrenchment of the prevalent assembly of form I rubisco, providing additional context when viewing the enzyme family through the broader lens of protein evolution.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo
9.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786679

RESUMEN

Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates that aid in the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the ∼130 structurally diverse HMOs at scale has proven difficult. Here, we produce a vast diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high value HMOs, such as lacto-N-fucopentaose I, that have not yet been commercially produced using state-of-the-art microbial fermentative processes. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the cheap and sustainable production of HMOs.

10.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745555

RESUMEN

Transcription factors promote gene expression via trans-regulatory activation domains. Although whole genome scale screens in model organisms (e.g. human, yeast, fly) have helped identify activation domains from transcription factors, such screens have been less extensively used to explore the occurrence of activation domains in non-transcription factor proteins, such as transcriptional coactivators, chromatin regulators and some cytosolic proteins, leaving a blind spot on what role activation domains in these proteins could play in regulating transcription. We utilized the activation domain predictor PADDLE to mine the entire proteomes of two model eukaryotes, Arabidopsis thaliana and Saccharomyces cerevisiae ( 1 ). We characterized 18,000 fragments covering predicted activation domains from >800 non-transcription factor genes in both species, and experimentally validated that 89% of proteins contained fragments capable of activating transcription in yeast. Peptides with similar sequence composition show a broad range of activities, which is explained by the arrangement of key amino acids. We also annotated hundreds of nuclear proteins with activation domains as putative coactivators; many of which have never been ascribed any function in plants. Furthermore, our library contains >250 non-nuclear proteins containing peptides with activation domain function across both eukaryotic lineages, suggesting that there are unknown biological roles of these peptides beyond transcription. Finally, we identify and validate short, 'universal' eukaryotic activation domains that activate transcription in both yeast and plants with comparable or stronger performance to state-of-the-art activation domains. Overall, our dual host screen provides a blueprint on how to systematically discover novel genetic parts for synthetic biology that function across a wide diversity of eukaryotes. Significance Statement: Activation domains promote transcription and play a critical role in regulating gene expression. Although the mapping of activation domains from transcription factors has been carried out in previous genome-wide screens, their occurrence in non-transcription factors has been less explored. We utilize an activation domain predictor to mine the entire proteomes of Arabidopsis thaliana and Saccharomyces cerevisiae for new activation domains on non-transcription factor proteins. We validate peptides derived from >750 non-transcription factor proteins capable of activating transcription, discovering many potentially new coactivators in plants. Importantly, we identify novel genetic parts that can function across both species, representing unique synthetic biology tools.

11.
PLoS Biol ; 21(7): e3002190, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37459291

RESUMEN

Our basic understanding of carbon cycling in the biosphere remains qualitative and incomplete, precluding our ability to effectively engineer novel solutions to climate change. How can we attempt to engineer the unknown? This challenge has been faced before in plant biology, providing a roadmap to guide future efforts. We use examples from over a century of photosynthesis research to illustrate the key principles that will set future plant engineering on a solid footing, namely, an effort to identify the key control variables, quantify the effects of systematically tuning these variables, and use theory to account for these observations. The main contributions of plant synthetic biology will stem not from delivering desired genotypes but from enabling the kind of predictive understanding necessary to rationally design these genotypes in the first place. Only then will synthetic plant biology be able to live up to its promise.


Asunto(s)
Cambio Climático , Suelo , Plantas/genética , Biología Sintética , Fotosíntesis/genética
12.
mSystems ; 8(4): e0033323, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37477440

RESUMEN

Agrobacteria are a diverse, polyphyletic group of prokaryotes with multipartite genomes capable of transferring DNA into the genomes of host plants, making them an essential tool in plant biotechnology. Despite their utility in plant transformation, genome-wide transcriptional regulation is not well understood across the three main lineages of agrobacteria. Transcription start sites (TSSs) are a necessary component of gene expression and regulation. In this study, we used differential RNA-seq and a TSS identification algorithm optimized on manually annotated TSS, then validated with existing TSS to identify thousands of TSS with nucleotide resolution for representatives of each lineage. We extend upon the 356 TSSs previously reported in Agrobacterium fabrum C58 by identifying 1,916 TSSs. In addition, we completed genomes and phenotyping of Rhizobium rhizogenes C16/80 and Allorhizobium vitis T60/94, identifying 2,650 and 2,432 TSSs, respectively. Parameter optimization was crucial for an accurate, high-resolution view of genome and transcriptional dynamics, highlighting the importance of algorithm optimization in genome-wide TSS identification and genomics at large. The optimized algorithm reduced the number of TSSs identified internal and antisense to the coding sequence on average by 90.5% and 91.9%, respectively. Comparison of TSS conservation between orthologs of the three lineages revealed differences in cell cycle regulation of ctrA as well as divergence of transcriptional regulation of chemotaxis-related genes when grown in conditions that simulate the plant environment. These results provide a framework to elucidate the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. IMPORTANCE Transcription start sites (TSSs) are fundamental for understanding gene expression and regulation. Agrobacteria, a group of prokaryotes with the ability to transfer DNA into the genomes of host plants, are widely used in plant biotechnology. However, the genome-wide transcriptional regulation of agrobacteria is not well understood, especially in less-studied lineages. Differential RNA-seq and an optimized algorithm enabled identification of thousands of TSSs with nucleotide resolution for representatives of each lineage. The results of this study provide a framework for elucidating the mechanistic basis and evolution of pathology across the three main lineages of agrobacteria. The optimized algorithm also highlights the importance of parameter optimization in genome-wide TSS identification and genomics at large.


Asunto(s)
Genómica , Transcriptoma , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Nucleótidos
13.
Anal Chem ; 95(28): 10618-10624, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37390485

RESUMEN

Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.


Asunto(s)
Glicósidos , Espectrometría de Masas en Tándem , Glicósidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones , Azúcares , Cromatografía Líquida de Alta Presión/métodos
14.
Cell Syst ; 14(6): 501-511.e4, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37348464

RESUMEN

The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Redes Reguladoras de Genes/genética , Arabidopsis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética
15.
Biomolecules ; 13(4)2023 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37189344

RESUMEN

Form I rubiscos evolved in Cyanobacteria ≥ 2.5 billion years ago and are enzymatically unique due to the presence of small subunits (RbcS) capping both ends of an octameric large subunit (RbcL) rubisco assembly to form a hexadecameric (L8S8) holoenzyme. Although RbcS was previously thought to be integral to Form I rubisco stability, the recent discovery of a closely related sister clade of octameric rubiscos (Form I'; L8) demonstrates that the L8 complex can assemble without small subunits (Banda et al. 2020). Rubisco also displays a kinetic isotope effect (KIE) where the 3PG product is depleted in 13C relative to 12C. In Cyanobacteria, only two Form I KIE measurements exist, making interpretation of bacterial carbon isotope data difficult. To aid comparison, we measured in vitro the KIEs of Form I' (Candidatus Promineofilum breve) and Form I (Synechococcus elongatus PCC 6301) rubiscos and found the KIE to be smaller in the L8 rubisco (16.25 ± 1.36‱ vs. 22.42 ± 2.37‱, respectively). Therefore, while small subunits may not be necessary for protein stability, they may affect the KIE. Our findings may provide insight into the function of RbcS and allow more refined interpretation of environmental carbon isotope data.


Asunto(s)
Proteínas Bacterianas , Ribulosa-Bifosfato Carboxilasa , Isótopos de Carbono , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas Bacterianas/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(20): e2300466120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155899

RESUMEN

The history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO2 is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record. Therefore, we measured both biomass (εp) and enzymatic (εRubisco) carbon isotope fractionations of a cyanobacterial strain (Synechococcus elongatus PCC 7942) solely expressing a putative ancestral Form 1B rubisco dating to ≫1 Ga. This strain, nicknamed ANC, grows in ambient pCO2 and displays larger εp values than WT, despite having a much smaller εRubisco (17.23 ± 0.61‰ vs. 25.18 ± 0.31‰, respectively). Surprisingly, ANC εp exceeded ANC εRubisco in all conditions tested, contradicting prevailing models of cyanobacterial carbon isotope fractionation. Such models can be rectified by introducing additional isotopic fractionation associated with powered inorganic carbon uptake mechanisms present in Cyanobacteria, but this amendment hinders the ability to accurately estimate historical pCO2 from geological data. Understanding the evolution of rubisco and the CO2 concentrating mechanism is therefore critical for interpreting the carbon isotope record, and fluctuations in the record may reflect the evolving efficiency of carbon fixing metabolisms in addition to changes in atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Isótopos de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Fotosíntesis
17.
Microbiol Spectr ; 11(3): e0037323, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212656

RESUMEN

The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise constitutive and inducible gene expression in a wide range of Gram-negative bacterial species. Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of red fluorescent protein (RFP), with a broad-host-range BBR1 origin and a kanamycin resistance marker. The family also has seven inducible systems (Jungle Express, Psal/NahR, Pm/XylS, Prha/RhaS, LacO1/LacI, LacUV5/LacI, and Ptet/TetR) controlling RFP expression on BBR1/kanamycin plasmid backbones. For four of these inducible systems (Jungle Express, Psal/NahR, LacO1/LacI, and Ptet/TetR), we created variants that utilize the RK2 origin and spectinomycin or gentamicin selection. Relevant RFP expression and growth data have been collected in the model bacterium Escherichia coli as well as Pseudomonas putida. All pGinger vectors are available via the Joint BioEnergy Institute (JBEI) Public Registry. IMPORTANCE Metabolic engineering and synthetic biology are predicated on the precise control of gene expression. As synthetic biology expands beyond model organisms, more tools will be required that function robustly in a wide range of bacterial hosts. The pGinger family of plasmids constitutes 43 plasmids that will enable both constitutive and inducible gene expression in a wide range of nonmodel Proteobacteria.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Plásmidos/genética , Regiones Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo
18.
ACS Synth Biol ; 12(5): 1533-1545, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083366

RESUMEN

The need for convenient tools to express transgenes over a large dynamic range is pervasive throughout plant synthetic biology; however, current efforts are largely limited by the heavy reliance on a small set of strong promoters, precluding more nuanced and refined engineering endeavors in planta. To address this technical gap, we characterize a suite of constitutive promoters that span a wide range of transcriptional levels and develop a GoldenGate-based plasmid toolkit named PCONS, optimized for versatile cloning and rapid testing of transgene expression at varying strengths. We demonstrate how easy access to a stepwise gradient of expression levels can be used for optimizing synthetic transcriptional systems and the production of small molecules in planta. We also systematically investigate the potential of using PCONS as an internal standard in plant biology experimental design, establishing the best practices for signal normalization in experiments. Although our library has primarily been developed for optimizing expression in N. benthamiana, we demonstrate the translatability of our promoters across distantly related species using a multiplexed reporter assay with barcoded transcripts. Our findings showcase the advantages of the PCONS library as an invaluable toolkit for plant synthetic biology.


Asunto(s)
Plantas , Plantas/genética , Regiones Promotoras Genéticas/genética , Transgenes/genética , Plásmidos/genética , Expresión Génica
19.
Plant Physiol ; 192(2): 1338-1358, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36896653

RESUMEN

Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.


Asunto(s)
Diterpenos , Zea mays , Zea mays/metabolismo , Diterpenos/metabolismo , Vías Biosintéticas , Metabolismo de los Lípidos
20.
Nat Prod Rep ; 40(7): 1170-1180, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-36853278

RESUMEN

Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.


Asunto(s)
Glicósidos , Glicosiltransferasas , Glicosiltransferasas/química , Glicósidos/farmacología , Glicósidos/química , Glicosilación , Plantas/metabolismo , Descubrimiento de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...