Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Blood ; 142(20): 1740-1751, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37738562

RESUMEN

Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.


Asunto(s)
Histiocitosis , Proteínas Quinasas Activadas por Mitógenos , Humanos , Histiocitosis/genética , Histiocitosis/patología , Mutación , Receptores Toll-Like , Inflamación/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
2.
Cancer Cell ; 36(2): 115-117, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408616

RESUMEN

Studies of the mechanisms of acute leukemia transformation from a preleukemic state in humans are hampered by the absence of clinical preleukemia syndromes. In this issue of Cancer Cell, Labuhn et al. provide a functional genomics view on the leukemic evolution from congenital preleukemia in children with Down syndrome.


Asunto(s)
Síndrome de Down , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Preleucemia , Transformación Celular Neoplásica , Niño , Humanos
3.
Cell Cycle ; 18(11): 1169-1176, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31116076

RESUMEN

DAPK1 and DAPK2 are calmodulin (CaM)-regulated protein kinases that share a high degree of homology in their catalytic and CaM regulatory domains. Both kinases function as tumor suppressors, and both have been implicated in autophagy regulation. Over the years, common regulatory mechanisms for the two kinases as well as kinase-specific ones have been identified. In a recent work, we revealed that DAPK2 is phosphorylated on Ser289 by the metabolic sensor AMPK, and that this phosphorylation enhances DAPK2 catalytic activity. Notably, Ser289 is conserved between DAPK1 and DAPK2, and was previously found to be phosphorylated in DAPK1 by RSK. Intriguingly, Ser289 phosphorylation was conversely reported to inhibit the pro-apoptotic activity of DAPK1 in cells. However, as the direct effect of this phosphorylation on DAPK1 catalytic activity was not tested, indirect effects were not excluded. Here, we compared Ser289 phosphorylation of the two kinases in the same cells and found that the intracellular signaling pathways that lead to Ser289 phosphorylation are mutually-exclusive and different for each kinase. In addition, we found that Ser289 phosphorylation in fact enhances DAPK1 catalytic activity, similar to the effect on DAPK2. Thus, Ser289 phosphorylation activates both DAPK1 and DAPK2, but in response to different intracellular signaling pathways.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Catálisis , Proteínas Quinasas Asociadas a Muerte Celular/química , Activación Enzimática , Células HCT116 , Células HEK293 , Humanos , Fosforilación/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología
4.
Oncotarget ; 9(60): 31570-31571, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30167079
5.
Nat Commun ; 9(1): 1759, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717115

RESUMEN

Autophagy is an intracellular degradation process essential for adaptation to metabolic stress. DAPK2 is a calmodulin-regulated protein kinase, which has been implicated in autophagy regulation, though the mechanism is unclear. Here, we show that the central metabolic sensor, AMPK, phosphorylates DAPK2 at a critical site in the protein structure, between the catalytic and the calmodulin-binding domains. This phosphorylation activates DAPK2 by functionally mimicking calmodulin binding and mitigating an inhibitory autophosphorylation, providing a novel, alternative mechanism for DAPK2 activation during metabolic stress. In addition, we show that DAPK2 phosphorylates the core autophagic machinery protein, Beclin-1, leading to dissociation of its inhibitor, Bcl-XL. Importantly, phosphorylation of DAPK2 by AMPK enhances DAPK2's ability to phosphorylate Beclin-1, and depletion of DAPK2 reduces autophagy in response to AMPK activation. Our study reveals a unique calmodulin-independent mechanism for DAPK2 activation, critical to its function as a novel downstream effector of AMPK in autophagy.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Estrés Fisiológico , Células A549 , Secuencia de Aminoácidos , Animales , Beclina-1/metabolismo , Catálisis , Proteínas Quinasas Asociadas a Muerte Celular/química , Dimerización , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Mutación , Fosforilación , Homología de Secuencia de Aminoácido , Serina/metabolismo , Treonina/metabolismo , Proteína bcl-X/metabolismo
6.
J Biomed Inform ; 63: 366-378, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27522000

RESUMEN

We propose a model-driven methodology aimed to shed light on complex disorders. Our approach enables exploring shared etiologies of comorbid diseases at the molecular pathway level. The method, Comparative Comorbidities Simulation (CCS), uses stochastic Petri net simulation for examining the phenotypic effects of perturbation of a network known to be involved in comorbidities to predict new roles for mutations in comorbid conditions. To demonstrate the utility of our novel methodology, we investigated the molecular convergence of autism spectrum disorder (ASD) and inflammatory bowel disease (IBD) on the autophagy pathway. In addition to validation by domain experts, we used formal analyses to demonstrate the model's self-consistency. We then used CCS to compare the effects of loss of function (LoF) mutations previously implicated in either ASD or IBD on the autophagy pathway. CCS identified similar dynamic consequences of these mutations in the autophagy pathway. Our method suggests that two LoF mutations previously implicated in IBD may contribute to ASD, and one ASD-implicated LoF mutation may play a role in IBD. Future targeted genomic or functional studies could be designed to directly test these predictions.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Enfermedades Inflamatorias del Intestino/complicaciones , Mutación , Trastorno del Espectro Autista/genética , Autofagia/genética , Comorbilidad , Humanos , Enfermedades Inflamatorias del Intestino/genética , Fenotipo
7.
Cell Rep ; 8(3): 909-21, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25066129

RESUMEN

Apoptosis and autophagy are distinct biological processes, each driven by a different set of protein-protein interactions, with significant crosstalk via direct interactions among apoptotic and autophagic proteins. To measure the global profile of these interactions, we adapted the Gaussia luciferase protein-fragment complementation assay (GLuc PCA), which monitors binding between proteins fused to complementary fragments of a luciferase reporter. A library encompassing 63 apoptotic and autophagic proteins was constructed for the analysis of ∼3,600 protein-pair combinations. This generated a detailed landscape of the apoptotic and autophagic modules and points of interface between them, identifying 46 previously unknown interactions. One of these interactions, between DAPK2, a Ser/Thr kinase that promotes autophagy, and 14-3-3τ, was further investigated. We mapped the region responsible for 14-3-3τ binding and proved that this interaction inhibits DAPK2 dimerization and activity. This proof of concept underscores the power of the GLuc PCA platform for the discovery of biochemical pathways within the cell death network.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Redes Reguladoras de Genes , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica
8.
Apoptosis ; 19(2): 286-97, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24220854

RESUMEN

DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK's activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Animales , Apoptosis , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , Humanos , Estructura Terciaria de Proteína , Relación Estructura-Actividad
9.
Blood ; 115(5): 1006-17, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19965641

RESUMEN

We report gene expression and other analyses to elucidate the molecular characteristics of acute lymphoblastic leukemia (ALL) in children with Down syndrome (DS). We find that by gene expression DS-ALL is a highly heterogeneous disease not definable as a unique entity. Nevertheless, 62% (33/53) of the DS-ALL samples analyzed were characterized by high expression of the type I cytokine receptor CRLF2 caused by either immunoglobulin heavy locus (IgH@) translocations or by interstitial deletions creating chimeric transcripts P2RY8-CRLF2. In 3 of these 33 patients, a novel activating somatic mutation, F232C in CRLF2, was identified. Consistent with our previous research, mutations in R683 of JAK2 were identified in 10 specimens (19% of the patients) and, interestingly, all 10 had high CRLF2 expression. Cytokine receptor-like factor 2 (CRLF2) and mutated Janus kinase 2 (Jak2) cooperated in conferring cytokine-independent growth to BaF3 pro-B cells. Intriguingly, the gene expression signature of DS-ALL is enriched with DNA damage and BCL6 responsive genes, suggesting the possibility of B-cell lymphocytic genomic instability. Thus, DS confers increased risk for genetically highly diverse ALLs with frequent overexpression of CRLF2, associated with activating mutations in the receptor itself or in JAK2. Our data also suggest that the majority of DS children with ALL may benefit from therapy blocking the CRLF2/JAK2 pathways.


Asunto(s)
Síndrome de Down/genética , Janus Quinasa 2/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Animales , Western Blotting , Línea Celular , Niño , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Heterogeneidad Genética , Humanos , Hibridación Fluorescente in Situ , Janus Quinasa 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , Receptores de Citocinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA