Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 34(1): 7-17, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385880

RESUMEN

Genomic DNA is wrapped around a core histone octamer and forms a nucleosome. In higher eukaryotic cells, strings of nucleosomes are irregularly folded as chromatin domains that act as functional genome units. According to a typical textbook model, chromatin can be categorized into two types, euchromatin and heterochromatin, based on its degree of compaction. Euchromatin is open, while heterochromatin is closed and condensed. However, is euchromatin really open in the cell? New evidence from genomics and advanced imaging studies has revealed that euchromatin consists of condensed liquid-like domains. Condensed chromatin seems to be the default chromatin state in higher eukaryotic cells. We discuss this novel view of euchromatin in the cell and how the revealed organization is relevant to genome functions.


Asunto(s)
Eucromatina , Heterocromatina , Humanos , Cromatina , Nucleosomas
2.
Sci Adv ; 9(14): eadf1488, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018405

RESUMEN

In eukaryotes, higher-order chromatin organization is spatiotemporally regulated as domains, for various cellular functions. However, their physical nature in living cells remains unclear (e.g., condensed domains or extended fiber loops; liquid-like or solid-like). Using novel approaches combining genomics, single-nucleosome imaging, and computational modeling, we investigated the physical organization and behavior of early DNA replicated regions in human cells, which correspond to Hi-C contact domains with active chromatin marks. Motion correlation analysis of two neighbor nucleosomes shows that nucleosomes form physically condensed domains with ~150-nm diameters, even in active chromatin regions. The mean-square displacement analysis between two neighbor nucleosomes demonstrates that nucleosomes behave like a liquid in the condensed domain on the ~150 nm/~0.5 s spatiotemporal scale, which facilitates chromatin accessibility. Beyond the micrometers/minutes scale, chromatin seems solid-like, which may contribute to maintaining genome integrity. Our study reveals the viscoelastic principle of the chromatin polymer; chromatin is locally dynamic and reactive but globally stable.


Asunto(s)
Cromatina , Nucleosomas , Humanos , ADN , Eucariontes , Ensamble y Desensamble de Cromatina
3.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758641

RESUMEN

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Meiosis , Recombinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...