Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 435(15): 168172, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290739

RESUMEN

YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Canales de Translocación SEC/metabolismo , Especificidad por Sustrato
2.
Nucleic Acids Res ; 49(3): 1550-1566, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33503266

RESUMEN

Regulatory nascent peptides participate in the regulation of cellular functions by the mechanisms involving regulated translation arrest. A class of them in bacteria, called monitoring substrates, feedback-regulates the expression of a specific component of protein localization machinery. Three monitoring substrates, SecM, MifM and VemP have previously been identified. Here, we attempt at identifying additional arrest peptides in bacteria. Our bioinformatic searches over more than 400 bacterial genomic sequences for proteins that have the common characteristic features shared by the known monitoring substrates and subsequent in vitro and in vivo characterization of the highlighted sequences allowed the identification of three arrest peptides termed ApcA, ApdA and ApdP. ApcA and ApdA homologs are conserved among a subset of actinobacteria, whereas ApdP has homologs in a subset of α-proteobacteria. We demonstrate that these arrest peptides, in their ribosome-tethered nascent states, inhibit peptidyl transfer. The elongation arrest occurs at a specific codon near the 3' end of the coding region, in a manner depending on the amino acid sequence of the nascent chain. Interestingly, the arrest sequences of ApcA, ApdA and ApdP share a sequence R-A-P-G/P that is essential for the elongation arrest.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Péptidos/química , Actinobacteria/genética , Alphaproteobacteria/genética , Codón , Biología Computacional , Mutación , Sistemas de Lectura Abierta , Péptidos/genética , Biosíntesis de Proteínas , Ribosomas
3.
Nat Commun ; 10(1): 5397, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776341

RESUMEN

Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Ribosomas/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Microorganismos Modificados Genéticamente , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética
4.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-32025287

RESUMEN

The Sec translocon provides a polypeptide-conducting channel, which is insulated from the hydrophobic lipidic environment of the membrane, for translocation of hydrophilic passenger polypeptides. Its lateral gate allows a downstream hydrophobic segment (stop-transfer sequence) to exit the channel laterally for integration into the lipid phase. We note that this channel model only partly accounts for the translocon function. The other essential role of translocon is to facilitate de novo insertion of the N-terminal topogenic segment of a substrate polypeptide into the membrane. Recent structural studies suggest that de novo insertion does not use the polypeptide-conducting channel; instead, it takes place directly at the lateral gate, which is prone to opening. We propose that the de novo insertion process, in concept, is similar to that of insertases (such as YidC in bacteria and EMC3 in eukaryotes), in which an intramembrane surface of the machinery provides the halfway point of insertion.


Asunto(s)
Canales de Translocación SEC/fisiología , Archaea , Bacterias , Péptidos
5.
Nat Commun ; 6: 6941, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903689

RESUMEN

Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner.


Asunto(s)
Bacillus subtilis , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas/genética , Ribosomas/química , Proteínas Bacterianas , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Conformación Molecular , Señales de Clasificación de Proteína/genética , ARN de Transferencia , Proteínas Ribosómicas
6.
Proc Natl Acad Sci U S A ; 112(16): 5063-8, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25855636

RESUMEN

The recently solved crystal structure of YidC protein suggests that it mediates membrane protein insertion by means of an intramembrane cavity rather than a transmembrane (TM) pore. This concept of protein translocation prompted us to characterize the native, membrane-integrated state of YidC with respect to the hydropathic nature of its TM region. Here, we show that the cavity-forming region of the stage III sporulation protein J (SpoIIIJ), a YidC homolog, is indeed open to the aqueous milieu of the Bacillus subtilis cells and that the overall hydrophilicity of the cavity, along with the presence of an Arg residue on several alternative sites of the cavity surface, is functionally important. We propose that YidC functions as a proteinaceous amphiphile that interacts with newly synthesized membrane proteins and reduces energetic costs of their membrane traversal.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Escherichia coli/metabolismo , Etilmaleimida/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/metabolismo , Estructura Terciaria de Proteína , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA