Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(11): 2082-2089, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36808205

RESUMEN

In the case of poly(methyl methacrylate) (PMMA) thin films on a Si substrate, thermal annealing induces the formation of a layer of PMMA chains tightly adsorbed near the substrate interface, and the strongly adsorbed PMMA remains on the substrate, even after washing with toluene (hereinafter called adsorbed sample). Neutron reflectometry revealed that the concerned structure consists of three layers: an inner layer (tightly bound on the substrate), a middle layer (bulk-like), and an outer layer (surface) in the adsorbed sample. When an adsorbed sample was exposed to toluene vapor, it became clear that, between the solid adsorption layer (which does not swell) and bulk-like swollen layer, there was a "buffer layer" that could sorb more toluene molecules than the bulk-like layer. This buffer layer was found not only in the adsorbed sample but also in the standard spin-cast PMMA thin films on the substrate. When the polymer chains were firmly adsorbed and immobilized on the Si substrate, the freedom of the possible structure right next to the tightly bound layer was reduced, which restricted the relaxation of the conformation of the polymer chain strongly. The "buffer layer" was manifested by the sorption of toluene with different scattering length density contrasts.

2.
Langmuir ; 38(41): 12457-12465, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194884

RESUMEN

We measured the neutron reflectivity (NR) of isotactic polypropylene (PP) thin films deposited on Si substrates modified by hexamethyldisilazane (HMDS) at the saturated vapor pressure of deuterated water at 25 °C and 60 °C/85% RH to investigate the effect of HMDS on the interfacial water accumulation in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. We found that the amount of water accumulated at the PP/Si interface decreased with increasing immersion time of the Si substrate in a solution of HMDS in hexane prior to PP film deposition. During the immersion of the Si substrate, the HMDS molecules were deposited on the Si substrate as a monolayer without aggregation. Furthermore, the coverage of the HMDS monolayer on the Si substrate increased with increasing immersion time. At 60 ° C and 85% RH, only a slight amount of interfacial water was detected after HMDS treatment for 1200 min. As a result, the maximum concentration of interfacial water was reduced to 0.1 from 0.3, where the latter corresponds to the PP film deposited on the untreated substrate.

3.
Langmuir ; 37(49): 14550-14557, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34865493

RESUMEN

We performed neutron reflectivity (NR) measurements of isotactic polypropylene (PP) thin films deposited on a Si substrate at the saturated vapor pressure of deuterated water to investigate interfacial water accumulation between the PP and metal surfaces in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. The PP thin films prepared on a Si substrate by a spin-coating technique were adequate as a model system for the PP/metal interface in these materials. A water-rich layer with a maximum water concentration of 0.5, which was considerably higher than those reported in previous studies of organic/inorganic interfaces, was observed within a width of approximately 3 nm at the interface under saturated vapor conditions. This could be attributed to the weak interaction between the PP thin film and the Si substrate. The pathway of moisture transport to the interfacial region was along the interface rather than through the PP film because the hydrophobic PP thin film does not entirely swell with water vapor.

4.
Langmuir ; 36(49): 15181-15188, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33259712

RESUMEN

We investigated the polymer chain dynamics in a 2-3 nm thick poly(vinyl acetate) (PVAc) adsorption layer on a Si substrate with a native oxide layer via neutron reflectometry combined with toluene vapor-induced swelling. We can investigate the polymer chain dynamics difference in the film thickness direction by the difference in the degree of swelling of the polymer layers detected by neutron reflectometry. The mobility of the polymer chains depends on the distance from the substrate. The results elucidated that the interfacial layer with a thickness of approximately 1 nm did not swell at all with toluene vapor, which is a solvent for PVAc. Meanwhile, the surface layer excessively swells with toluene vapor compared to the bulk. This indicates that the polymer chain within the interfacial region is immobilized by the substrate through hydrogen-bonding interaction, but in the surface region, the surface effect overcomes this interfacial interaction. We concluded that the polymer chains in the adsorption layer are either strongly constrained to the substrate, owing to hydrogen bonding, or more mobile than the bulk, owing to the surface effect.

5.
Langmuir ; 34(8): 2856-2864, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29377703

RESUMEN

We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...