Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 42(6): 1765-1776, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33599915

RESUMEN

REV-ERBs are heme-binding nuclear receptors that regulate the circadian rhythm and play important roles in the regulation of proliferation and the neuronal differentiation process in neuronal stem/progenitor cells in the adult brain. However, the effects of REV-ERB activation in the adult brain remain unclear. In this study, SR9009, a synthetic REV-ERB agonist that produces anxiolytic effects in mice, was used to treat undifferentiated and neuronally differentiated cultured rat adult hippocampal neural stem/progenitor cells (AHPs). The expression of Rev-erbß was upregulated during neurogenesis in cultured rat AHPs, and Rev-erbß knockdown analysis indicated that REV-ERBß regulates the proliferation and neurite outgrowth of cultured rat AHPs. The application of a low concentration (0.1 µM) of the REV-ERB agonist SR9009 enhanced neurite outgrowth during neurogenesis in cultured rat AHPs, whereas the addition of a high concentration (2.5 µM) of SR9009 suppressed neurite outgrowth. Further examination of the SR9009 regulatory mechanism showed that the expressions of downstream target genes of REV-ERBß, including Ccna2 and Sez6, were modulated by SR9009. The results of this study indicated that REV-ERBß activity in cultured rat AHPs was regulated by SR9009 in a concentration-dependent manner. Furthermore, SR9009 inhibited the growth of cultured rat AHPs through various pathways, which may provide insight into the multifunctional mechanisms of action associated with SR9009. The findings of this study may provide an improved understanding of proliferation and neuronal maturation mechanisms in cultured rat AHPs through SR9009-regulated REV-ERBß signaling pathways.


Asunto(s)
Células-Madre Neurales , Proyección Neuronal , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Pirrolidinas , Tiofenos , Animales , Proliferación Celular , Ciclina A2/metabolismo , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Pirrolidinas/farmacología , Ratas , Tiofenos/farmacología
3.
Cell Mol Neurobiol ; 38(5): 1051-1065, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29397477

RESUMEN

Neural stem cells (NSCs) serve as the source of both neurons and support cells, and neurogenesis is reportedly linked to the circadian clock. This study aimed to clarify the functional role of the circadian rhythm-related nuclear receptor, REV-ERBß, in neurogenesis of NSCs from adult brain. Accordingly, Rev-erbß expression and the effect of Rev-erbß gene-specific knockdown on neurogenesis in vitro was examined in adult rodent NSCs. Initial experiments confirmed REV-ERBß expression in cultured adult NSCs, while subsequent gene expression and gene ontogeny analyses identified functional genes upregulated or downregulated by REV-ERBß. In particular, expression levels of factors associated with proliferation, stemness, and neural differentiation were affected. Knockdown of Rev-erbß showed involvement of REV-ERBß in regulation of cellular proliferation and self-renewal of cultured adult NSCs. Moreover, Rev-erbß-knockdown cells formed neurons with a slightly shrunken morphology, fewer new primary neurites, and reduced length and branch formation of neurites. Altogether, this suggests that REV-ERBß is involved in neurite formation during neuronal differentiation of cultured adult NSCs. In summary, REV-ERBß is a known circadian regulatory protein that appears to be involved in neurogenesis via regulation of networks for cell proliferation and neural differentiation/maturation in adult NSCs.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuritas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Envejecimiento/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética
4.
Cell Mol Neurobiol ; 37(6): 995-1008, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27778125

RESUMEN

Adult neurogenesis originates from neural stem cells (NSCs) in specific regions of the adult brain. The molecular mechanisms that control the self-renewal and multipotency of NSCs have not been fully elucidated. In recent years, emerging evidence has revealed that ten-eleven translocation (TET) family DNA dioxygenases TET1 and TET2 play important roles in the central nervous system. Here, I present evidence that Tet1 and Tet2 are expressed in cultured NSCs derived from adult mouse brain and play an important role in the proliferative self-renewal of NSCs in an undifferentiated state. The investigation of intracellular molecular networks involving both Tet1 and Tet2 by gene knockdown and comprehensive genetic analyses showed that overlapping molecular mechanisms involving TET1 and TET2 regulate the expression of at least 16 genes required for DNA replication and cell cycle control. Interestingly, transcriptional regulation of the selected gene through TET1 and TET2 did not correlate with direct CpG demethylation of the gene promoter. These findings suggest that TET1 and TET2 play an important role in the proliferation of NSCs in the adult mouse brain by specifically regulating common genes for DNA replication and the cell cycle.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , Animales , Biomarcadores/metabolismo , Encéfalo/citología , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , Células Cultivadas , Islas de CpG/genética , Metilación de ADN/genética , Dioxigenasas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Regiones Promotoras Genéticas/genética
5.
World J Stem Cells ; 6(4): 485-90, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25258670

RESUMEN

Neural stem cells (NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.

6.
J Neurosci ; 33(9): 4066-75, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447615

RESUMEN

Newborn neurons are generated from neural stem cells (NSCs) in two major niches of the adult brain. Maintenance of self-renewal and multipotency of adult NSCs is controlled by multiple transcription factor networks. We show here that paired related homeobox protein Prx1 (MHox1/Prrx1) plays an important role in the maintenance of adult NSCs. Prx1 works with the transcription factor Sox2 as a coactivator, and depletion of Prx1 in cultured adult mouse NSCs reduces their self-renewal. In addition, we find that Prx1 protein is expressed in Sox2(+)/GFAP(+)/Nestin(+) astrocytes in the germinal regions of the adult mouse forebrain. The continuous expression of Prx1 in proliferating adult mouse hippocampal stem/progenitor cells in vivo leads to the generation of radial/horizontal-shaped astrocyte progenitor- and oligodendrocyte progenitor-like cells with no newborn neurons in the neurogenic niche. These data suggest that Prx1 plays an important role as a key switch for neural cell lineage determination and the maintenance of the self-renewal of adult NSCs at several stages in the adult brain.


Asunto(s)
Células Madre Adultas/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas/fisiología , Factores de Transcripción SOXB1/metabolismo , Animales , Astrocitos/fisiología , Bromodesoxiuridina , Caspasa 3/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Prosencéfalo/citología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Transfección , Técnicas del Sistema de Dos Híbridos
7.
J Biol Chem ; 287(8): 5969-78, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22194602

RESUMEN

Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.


Asunto(s)
Células-Madre Neurales/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética , Regiones no Traducidas 5'/genética , Animales , ADN/metabolismo , Femenino , Silenciador del Gen , Células HEK293 , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Ratas , Receptores Citoplasmáticos y Nucleares/deficiencia
8.
J Neurochem ; 93(2): 432-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15816866

RESUMEN

Activation of the transcription factor STAT3 is important for astrocyte differentiation during neural development. Demethylation of the methyl-CpG dinucleotide in the STAT3 binding site in the promoter of the glial fibrillary acidic protein (GFAP) gene, a marker for astrocytes, was previously shown to be a crucial cue for neural progenitors to express this gene in response to astrogenic signals during brain development. In this study, we analyzed the methylation status of the STAT3 binding site in the GFAP gene promoter during neural cell development from mouse embryonic stem (ES) cells in vitro. The CpG dinucleotide in the STAT3 binding site in the GFAP gene promoter exhibited a high incidence of cytidine-methylation in undifferentiated pluripotent ES cells. The high incidence of methylation of this particular cytidine was maintained in ES cell-derived neuroectoderm-like cells, but it underwent demethylation when the neural lineage cells became competent to express GFAP in response to a STAT3 activation signal. In contrast, hypermethylation of the CpG site was maintained in non-neural cells generated from the same ES cells. Progressive demethylation of the STAT3 binding site in the GFAP gene promoter was also observed in primary embryonic neuroepithelial cells during in vitro culture, whereas non-neural cells maintained hypermethylation of this site even after culture. Taken together, these results demonstrate that the astrocyte gene-specific cytidine-demethylation is programmed when neural progenitors from pluripotent cells are committed to a neural lineage that is capable of producing astrocytes.


Asunto(s)
Metilación de ADN , Embrión de Mamíferos/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Femenino , Ratones , Ratones Endogámicos ICR , Neuronas/citología , Embarazo , Factor de Transcripción STAT3 , Células Madre/citología , Transactivadores/genética , Transactivadores/metabolismo
9.
Development ; 130(11): 2505-12, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12702663

RESUMEN

Oct3/4 plays a critical role in maintaining embryonic stem cell pluripotency. Regulatable transgene-mediated sustained Oct3/4 expression in ES cells cultured in serum-free LIF-deficient medium caused accelerated differentiation to neuroectoderm-like cells that expressed Sox2, Otx1 and Emx2 and subsequently differentiated into neurons. Neurogenesis of ES cells is promoted by SDIA (stromal cell-derived inducing activity), which accumulates on the PA6 stromal cell surface. Oct3/4 expression in ES cells was maintained by SDIA whereas without it expression was promptly downregulated. Suppression of Oct3/4 abolished neuronal differentiation even after stimulation by SDIA. In contrast, sustained upregulated Oct3/4 expression enhanced SDIA-mediated neurogenesis of ES cells. Therefore, Oct3/4 appears to promote neuroectoderm formation and subsequent neuronal differentiation from ES cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Medio de Cultivo Libre de Suero , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Factor 3 de Transcripción de Unión a Octámeros , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...