Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 913: 169252, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38092210

RESUMEN

Groundwater contributes to an average of 8 % of the total water source capacity in the Republic of Korea. Hence, private residential households in rural areas in Korea are still using groundwater for drinking without any regular water quality inspection. This can increase the risk of exposure to natural radionuclides like uranium through drinking groundwater. This study investigated the uranium level in drinking groundwater all over the country by analyzing 11,451 samples from private residential drinking groundwater facilities and compared the exposure amount and its associated carcinogenic and non-carcinogenic risk based on the geological characteristics of the aquifer. Results yield that although the average hazard quotient (HQ) and excess cancer risk (ECR) of exposure to natural uranium through drinking groundwater were respectively below 1 and 1 × 10-6 and do not indicate a potential health hazard, significantly high HQ and ECR up to respectively 70 and 4 × 10-4 in samples where the aquifer is the Jurassic granite observed. Accordingly, regular water quality investigation and onsite treatment methods are required to provide healthy drinking water in such areas.


Asunto(s)
Agua Potable , Agua Subterránea , Uranio , Contaminantes Químicos del Agua , Uranio/análisis , República de Corea , Radioisótopos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
Sci Total Environ ; 902: 165779, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495147

RESUMEN

Understanding the temporal behaviors of naturally occurring radioactive materials is important for safeguarding groundwater as a secure water resource for drinking, agriculture, and industry usage. This study reports the vertical profiles of 238U concentration and 222Rn activity and the management of in situ monitoring systems during intensive field sampling of a national groundwater-monitoring borehole for seven years (2015-2021). The aim was to capture the seasonal characteristics of the 238U concentrations and 222Rn activity. Both factors were low in the rainy season and high in the winter season, reflecting the dilution effect of rainfall recharge. The 238U and 222Rn behaviors were associated with water-rock interactions of calcite dissolution in fracture zones filled with carbonate minerals. Furthermore, multilayer perceptron models estimated the 238U concentration and 222Rn activity with reasonable regression and classification accuracy. Hydrometeorological indicators (temperature and groundwater-level fluctuations) were more important estimators of 238U concentration and 222Rn activity than geochemical process indicators. The regression accuracy performance was higher at deeper sampling depths, where seasonality in the 238U and 222Rn behaviors dominated. From the predicted distributions of 238U concentrations and 222Rn activities, we could estimate the ranges of 238U concentrations and 222Rn activities emerging from groundwater boreholes. High exposure threats from 238U and 222Rn during groundwater usage were found in the winter season. When the multilayer perceptron models use the entire in situ monitoring data at refined temporal resolution, we can quickly determine the naturally occurring radioactive materials and further develop the national groundwater-monitoring borehole equipped with the in-situ monitoring system, supplementing the occasionally obtained field-measurement data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...