Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(10): 1821-1833, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37722671

RESUMEN

Each year, approximately 50,000 children under 5 die as a result of diarrhea caused by Cryptosporidium parvum, a protozoan parasite. There are currently no effective drugs or vaccines available to cure or prevent Cryptosporidium infection, and there are limited tools for identifying and validating targets for drug or vaccine development. We previously reported a high throughput screening (HTS) of a large compound library against Plasmodium N-myristoyltransferase (NMT), a validated drug target in multiple protozoan parasite species. To identify molecules that could be effective against Cryptosporidium, we counter-screened hits from the Plasmodium NMT HTS against Cryptosporidium NMT. We identified two potential hit compounds and validated them against CpNMT to determine if NMT might be an attractive drug target also for Cryptosporidium. We tested the compounds against Cryptosporidium using both cell-based and NMT enzymatic assays. We then determined the crystal structure of CpNMT bound to Myristoyl-Coenzyme A (MyrCoA) and structures of ternary complexes with MyrCoA and the hit compounds to identify the ligand binding modes. The binding site architectures display different conformational states in the presence of the two inhibitors and provide a basis for rational design of selective inhibitors.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Plasmodium , Niño , Humanos , Criptosporidiosis/tratamiento farmacológico , Desarrollo de Medicamentos
2.
Curr Opin Biotechnol ; 81: 102922, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004298

RESUMEN

The reproducibility of scientific research is crucial to the success of the scientific method. Here, we review the current best practices when publishing mechanistic models in systems biology. We recommend, where possible, to use software engineering strategies such as testing, verification, validation, documentation, versioning, iterative development, and continuous integration. In addition, adhering to the Findable, Accessible, Interoperable, and Reusable modeling principles allows other scientists to collaborate and build off of each other's work. Existing standards such as Systems Biology Markup Language, CellML, or Simulation Experiment Description Markup Language can greatly improve the likelihood that a published model is reproducible, especially if such models are deposited in well-established model repositories. Where models are published in executable programming languages, the source code and their data should be published as open-source in public code repositories together with any documentation and testing code. For complex models, we recommend container-based solutions where any software dependencies and the run-time context can be easily replicated.


Asunto(s)
Programas Informáticos , Biología de Sistemas , Biología de Sistemas/métodos , Reproducibilidad de los Resultados , Lenguajes de Programación , Simulación por Computador , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA