Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 13(1): 14070, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640762

RESUMEN

Organic light-emitting diode (OLED) microdisplays have received great attention owing to their excellent performance for augmented reality/virtual reality devices applications. However, high pixel density of OLED microdisplay causes electrical crosstalk, resulting in color distortion. This study investigated the current crosstalk ratio and changes in the color gamut caused by electrical crosstalk between sub-pixels in high-resolution full-color OLED microdisplays. A pixel structure of 3147 pixels per inch (PPI) with four sub-pixels and a single-stack white OLED with red, green, and blue color filters were used for the electrical crosstalk simulation. The results showed that the sheet resistance of the top and bottom electrodes of OLEDs rarely affected the electrical crosstalk. However, the current crosstalk ratio increased dramatically and the color gamut decreased as the sheet resistance of the common organic layer decreased. Furthermore, the color gamut of the OLED microdisplay decreased as the pixel density of the panel increased from 200 to 5000 PPI. Additionally, we fabricated a sub-pixel circuit to measure the electrical crosstalk current using a 3147 PPI scale multi-finger-type pixel structure and compared it with the simulation result.

3.
Opt Express ; 30(13): 24155-24165, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225082

RESUMEN

Herein, the color gamut change by optical crosstalk between sub-pixels in high-resolution full-color organic light-emitting diode (OLED) microdisplays was numerically investigated. The color gamut of the OLED microdisplay decreased dramatically as the pixel density of the panel increased from 100 pixels per inch (PPI) to 3000 PPI. In addition, the increase in thickness of the passivation layer between the bottom electrode and the top color filter results in a decrease in the color gamut. We also calculated the color gamut change depending on the pixel structures in the practical OLED microdisplay panel, which had an aspect ratio of 32:9 and a pixel density of 2,490 PPI. The fence angle and height, refractive index of the passivation layer, black matrix width, and white OLED device structure affect the color gamut of the OLED microdisplay panel because of the optical crosstalk effect.

4.
Nat Nanotechnol ; 17(9): 952-958, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35953539

RESUMEN

Colloidal quantum dots (QDs) stand at the forefront of a variety of photonic applications given their narrow spectral bandwidth and near-unity luminescence efficiency. However, integrating luminescent QD films into photonic devices without compromising their optical or transport characteristics remains challenging. Here we devise a dual-ligand passivation system comprising photocrosslinkable ligands and dispersing ligands to enable QDs to be universally compatible with solution-based patterning techniques. The successful control over the structure of both ligands allows the direct patterning of dual-ligand QDs on various substrates using commercialized photolithography (i-line) or inkjet printing systems at a resolution up to 15,000 pixels per inch without compromising the optical properties of the QDs or the optoelectronic performance of the device. We demonstrate the capabilities of our approach for QD-LED applications. Our approach offers a versatile way of creating various structures of luminescent QDs in a cost-effective and non-destructive manner, and could be implemented in nearly all commercial photonics applications where QDs are used.

5.
Opt Express ; 30(7): 11959-11972, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473127

RESUMEN

Even though it is in high demand to introduce a nano-structure (NS) light extraction technology on a silicon nitride to be used as a thin film encapsulation material for an organic light-emitting diode (OLED), only an industry-incompatible wet method has been reported. This work demonstrates a double-layer NS fabrication on the silicon nitride using a two-step organic vapor phase deposition (OVPD) of an industry-compatible dry process. The NS showed a wrinkle-like shape caused by coalescence of the nano-lenses. The NS integrated top-emitting OLED revealed 40 percent enhancement of current efficiency and improvement of the luminance distribution and color change according to viewing angle.

6.
Front Immunol ; 13: 1055531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591304

RESUMEN

Exposure to microgravity causes significant alterations in astronauts' immune systems during spaceflight; however, it is unknown whether microgravity affects mast cell homeostasis and activation. Here we show that microgravity negatively regulates the survival and effector function of mast cells. Murine bone marrow-derived mast cells (BMMCs) were cultured with IL-3 in a rotary cell culture system (RCCS) that generates a simulated microgravity (SMG) environment. BMMCs exposed to SMG showed enhanced apoptosis along with the downregulation of Bcl-2, and reduced proliferation compared to Earth's gravity (1G) controls. The reduction in survival and proliferation caused by SMG exposure was recovered by stem cell factor. In addition, SMG impaired mast cell degranulation and cytokine secretion. BMMCs pre-exposed to SMG showed decreased release of ß-hexosaminidase, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) upon stimulation with phorbol 12-myristate-13-acetate (PMA) plus calcium ionophore ionomycin, which correlated with decreased calcium influx. These findings provide new insights into microgravity-mediated alterations of mast cell phenotypes, contributing to the understanding of immune system dysfunction for further space medicine research.


Asunto(s)
Vuelo Espacial , Ingravidez , Ratones , Animales , Ingravidez/efectos adversos , Células Cultivadas , Mastocitos , Homeostasis
7.
ACS Appl Mater Interfaces ; 13(46): 55391-55402, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34758613

RESUMEN

We present herein the first report of organic/inorganic hybrid thin-film encapsulation (TFE) developed as an encapsulation process for mass production in the display industry. The proposed method was applied to fabricate a top-emitting organic light-emitting device (TEOLED). The organic/inorganic hybrid TFE has a 1.5 dyad structure and was fabricated using plasma-enhanced atomic layer deposition (PEALD) and inkjet printing (IJP) processes that can be applied to mass production operations in the industry. Currently, industries use inorganic thin films such as SiNx and SiOxNy fabricated through plasma-enhanced chemical vapor deposition (PECVD), which results in film thickness >1 µm; however, in the present work, an Al2O3 inorganic thin film with a thickness of 30 nm was successfully fabricated using ALD. Furthermore, to decouple the crack propagation between the adjacent Al2O3 thin films, an acrylate-based polymer layer was printed between these layers using IJP to finally obtain the 1.5 dyad hybrid TFE. The proposed method can be applied to optoelectronic devices with various form factors such as rollables and stretchable displays. The hybrid TFE developed in this study has a transmittance of 95% or more in the entire visible light region and a very low surface roughness of less than 1 nm. In addition, the measurement of water vapor transmission rate (WVTR) using commercial MOCON equipment yielded a value of 5 × 10-5 gm-2 day-1 (37.8 °C and 100% RH) or less, approaching the limit of the measuring equipment. The TFE was applied to TEOLEDs and the improvement in optical properties of the device was demonstrated. The OLED panel was manufactured and operated stably, showing excellent consistency even in the actual display manufacturing process. The panel operated normally even after 363 days in air. The proposed organic/inorganic hybrid encapsulant manufacturing process is applicable to the display industry and this study provides basic guidelines that can serve as a foothold for the development of various technologies in academia and industry alike.

8.
J Econ Behav Organ ; 192: 199-221, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34703068

RESUMEN

We estimate the economic impact of South Korea's targeted responses to the large-scale COVID-19 clusters in a highly concentrated business area (Guro) and a highly concentrated entertainment area (Itaewon) in Seoul, respectively. We find that foot traffic and retail sales decreased only within a 300 m radius and recovered to their pre-outbreak level after four weeks in the case of the Guro cluster. The reductions appear to be driven by temporary business closures rather than by citizens' risk avoidance behavior. However, the adverse economic impacts measured by foot traffic and retail sales of another outbreak of the COVID-19 cluster in Itaewon were persistent. Our results imply that the effects of less intense but more targeted COVID-19 interventions, such as pinpointed, temporary closures of businesses, can differ by underlying geographical characteristics.

9.
Opt Express ; 29(15): 23131-23141, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614583

RESUMEN

Optical properties of benzimidazole (BI)-doped layer-by-layer graphene differ significantly from those of intrinsic graphene. Our study based on transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling reveals that such a difference stems from its peculiar stratified geometry formed in situ during the doping process. This work presents an effective thickness and optical constants that can treat these multi-stacked BI-doped graphene electrodes as a single equivalent medium. For verification, the efficiency and angular emission spectra of organic light-emitting diodes with the BI-doped graphene electrode are modeled with the proposed method, and we demonstrate that the calculation matches experimental results in a much narrower margin than that based on the optical properties of undoped graphene.

10.
Microb Drug Resist ; 27(11): 1489-1494, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33926223

RESUMEN

The populations of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) have increasingly disseminated in humans, animals, and the environment. This study aimed to determine the prevalence, antimicrobial susceptibilities, and molecular characteristics of ESBL-EC isolates obtained from vegetable farm soil. In total, 200 soil samples were collected from vegetable farms in Incheon, South Korea, between 2018 and 2019 and cultured on MacConkey screening plates supplemented with 2 µg/mL cefotaxime. Cefotaxime-resistant ESBL-EC isolates were recovered from 4.0% (8/200) of the soil samples. All eight isolates were nonsusceptible to ampicillin, piperacillin, cefazolin, cefotaxime, and cefepime and harbored blaCTX-M-type ESBL genes, including blaCTX-M-15 (50.0%), blaCTX-M-55 (25.0%), and blaCTX-M-14 (25.0%). Phylogenetic analysis showed that the B1 lineage was predominant (75.0%), followed by A (12.5%) and B2 (12.5%) lineages. Multilocus sequence typing revealed eight different E. coli sequence types (STs), including ST10, ST73, ST155, ST847, ST2521, ST3285, ST5173, and ST9479. Notably, ST10 and ST73 belong to the global extraintestinal pathogenic E. coli lineages. Our findings demonstrated that the farm soil environment may serve as a reservoir of human-associated multidrug-resistant ESBL-producing pathogens.


Asunto(s)
Agricultura , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Microbiología del Suelo , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , República de Corea , beta-Lactamasas/genética
11.
Sci Rep ; 10(1): 19721, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184462

RESUMEN

The increasing prevalence of oxyimino-cephalosporin-resistant Enterobacteriaceae has become a global concern because of their clinical impact on both human and veterinary medicine. The present study determined the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) isolates from raw vegetables. A total of 1324 samples were collected from two agricultural wholesale markets in Incheon, South Korea in 2018. The ESBL-EC strains were isolated from 0.83% (11/1324) samples, and all of them were resistant to ampicillin, piperacillin, cefazoline, cefotaxime, and nalidixic acid and yielded CTX-M-type ESBL, including CTX-M-14, CTX-M-15, CTX-M-55, CTX-M-27, and CTX-M-65. The isolates belonged to phylogenetic subgroups D (n = 5), A (n = 4), and B1 (n = 2). Multilocus sequence typing revealed nine known E. coli sequence types (STs), including ST10, ST38, ST69, ST101, ST224, ST349, ST354, ST2509, ST2847, and two new STs. Notably, ST69, ST10, ST38, and ST354 belong to the major human-associated extraintestinal pathogenic E. coli lineages. Our results demonstrate that ESBL-producing multidrug-resistant pathogens may be transmitted to humans through the vegetable intake, highlighting the importance of resistance monitoring and intervention in the One Health perspective.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/clasificación , Escherichia coli/enzimología , Verduras/microbiología , Resistencia betalactámica , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia , República de Corea/epidemiología , beta-Lactamasas/genética
12.
Nat Commun ; 11(1): 2732, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483210

RESUMEN

Thin-film transistor (TFT)-driven full-color organic light-emitting diodes (OLEDs) with vertically stacked structures are developed herein using photolithography processes, which allow for high-resolution displays of over 2,000 pixels per inch. Vertical stacking of OLEDs by the photolithography process is technically challenging, as OLEDs are vulnerable to moisture, oxygen, solutions for photolithography processes, and temperatures over 100 °C. In this study, we develop a low-temperature processed Al2O3/SiNx bilayered protection layer, which stably protects the OLEDs from photolithography process solutions, as well as from moisture and oxygen. As a result, transparent intermediate electrodes are patterned on top of the OLED elements without degrading the OLED, thereby enabling to fabricate the vertically stacked OLED. The aperture ratio of the full-color-driven OLED pixel is approximately twice as large as conventional sub-pixel structures, due to geometric advantage, despite the TFT integration. To the best of our knowledge, we first demonstrate the TFT-driven vertically stacked full-color OLED.

13.
Front Microbiol ; 11: 604, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390965

RESUMEN

Extended-spectrum ß-lactam antimicrobials have been broadly used in food animals and humans to control infectious diseases. However, the emergence and rapid spread of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae, mainly Escherichia coli, have seriously threatened global health in recent decades. In this study, we determined the prevalence, antimicrobial susceptibility, and genetic properties of ESBL-producing E. coli (ESBL-EC) strains isolated from food animals in South Korea. A total of 150 fecal samples from healthy chickens (n = 34), pigs (n = 59), and cattle (n = 57) were screened from January to July 2018. Among these, 77 non-duplicate cefotaxime-resistant ESBL-EC strains were isolated from 32 chicken, 41 pig, and 4 cattle samples, with the corresponding occurrence rates of 94.1, 69.5, and 7.0%, respectively. All the isolates showed multidrug resistance (MDR) and produced at least one type of ß-lactamase, including CTX-M (98.7%) and TEM (40.3%). CTX-M-14 (53.1%), CTX-M-55 (53.7%), and CTX-M-65 (50.0%) were the predominant genotypes in the chicken, pig, and cattle samples, respectively. Multilocus sequence typing revealed 46 different sequence types (STs), including the human-associated extraintestinal pathogenic E. coli ST131 (n = 2), ST10 (n = 5), ST38 (n = 1), ST410 (n = 4), ST354 (n = 2), ST58 (n = 3), ST117 (n = 1), and ST457 (n = 1). To the best of our knowledge, this is the first report of pandemic E. coli ST131 in non-human isolates in South Korea. Our results demonstrate the high prevalence and diversity of MDR-ESBL-EC in food animals and highlight them as potential pathogenic ESBL-EC reservoirs that may pose a high risk to human health.

14.
Biochem Biophys Res Commun ; 521(1): 72-76, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629474

RESUMEN

Mast cells express high-affinity IgE receptor (FcεRI) on their surface, cross-linking of which leads to the immediate release of proinflammatory mediators such as histamine but also late-phase cytokine secretion, which are central to the pathogenesis of allergic diseases. Despite the growing evidences that mammalian target of rapamycin (mTOR) plays important roles in the immune system, it is still unclear how mTOR signaling regulates mast cell function. In this study, we investigated the effects of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) as an mTOR agonist on FcεRI-mediated allergic responses of mast cells. Our data showed that administration of 3BDO decreased ß-hexosaminidase, interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) release in murine bone marrow-derived mast cells (BMMCs) after FcεRI cross-linking, which was associated with an increase in mTOR complex 1 (mTORC1) signaling but a decrease in activation of Erk1/2, Jnk, and mTORC2-Akt. In addition, we found that a specific Akt agonist, SC79, is able to fully restore the decrease of ß-hexosaminidase release in 3BDO-treated BMMCs but has no effect on IL-6 release in these cells, suggesting that 3BDO negatively regulates FcεRI-mediated degranulation and cytokine release through differential mechanisms in mast cells. The present data demonstrate that proper activation of mTORC1 is crucial for mast cell effector function, suggesting the applicability of the mTORC1 activator as a useful therapeutic agent in mast cell-related diseases.


Asunto(s)
4-Butirolactona/análogos & derivados , Degranulación de la Célula/efectos de los fármacos , Mastocitos/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Receptores de IgE/antagonistas & inhibidores , 4-Butirolactona/farmacología , Animales , Mastocitos/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/inmunología , Receptores de IgE/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
15.
Int J Infect Dis ; 92: 53-55, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31877351

RESUMEN

Colistin is a last-resort antimicrobial against multidrug-resistant gram-negative bacteria. The occurrence and spread of colistin resistance in humans and animals have been reported globally. This study was performed to investigate the prevalence and antimicrobial susceptibility of mcr-harboring colistin-resistant Enterobacteriaceae from retail vegetables and food animals in South Korea in 2018. The mcr-1 gene was detected in Escherichia coli isolates from 0.076% (1/1324) of vegetables, 5.9% (2/34) of chickens, 6.8% (4/59) of pigs, and 0% (0/57) of cattle. Other mcr genes were not detected. All seven of the mcr-1-positive isolates showed multidrug resistance and co-produced ß-lactamases. Multilocus sequence typing analysis revealed five known E. coli sequence types (STs), including ST10 in the vegetable sample. The study findings demonstrated that the mcr-1 gene has emerged in vegetables and is increasingly detected in food animals in South Korea, highlighting the importance of continuous monitoring and control of colistin-resistant Enterobacteriaceae to prevent them from being transmitted to humans.


Asunto(s)
Colistina/farmacología , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/aislamiento & purificación , Microbiología de Alimentos , Verduras/microbiología , Animales , Antibacterianos/farmacología , Bovinos , Pollos , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Tipificación de Secuencias Multilocus , Prevalencia , República de Corea , Porcinos , beta-Lactamasas/metabolismo
16.
Immune Netw ; 18(3): e18, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29984036

RESUMEN

Mast cells integrate innate and adaptive immunity and are implicated in pathophysiological conditions, including allergy, asthma, and anaphylaxis. Cross-linking of the high-affinity IgE receptor (FcεRI) initiates diverse signal transduction pathways and induces release of proinflammatory mediators by mast cells. In this study, we demonstrated that hyperactivation of mechanistic target of rapamycin (mTOR) signaling using the mTOR activator MHY1485 suppresses FcεRI-mediated mast cell degranulation and cytokine secretion. MHY1485 treatment increased ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation, which are downstream targets of mTOR complex 1 (mTORC1), but decreased phosphorylation of Akt on mTOR complex 2 (mTORC2) target site serine 473. In addition, this activator decreased ß-hexosaminidase, IL-6, and tumor necrosis factor α (TNF-α) release in murine bone marrow-derived mast cells (BMMCs) after FcεRI stimulation. Furthermore, MHY1485-treated BMMCs showed significantly decreased proliferation when cultured with IL-3. These findings suggested hyperactivation of mTORC1 as a therapeutic strategy for mast cell-related diseases.

17.
ACS Appl Mater Interfaces ; 10(31): 26456-26464, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30010310

RESUMEN

Modification of multilayer graphene films was investigated for a cathode of organic light-emitting diodes (OLEDs). By doping the graphene/electron transport layer (ETL) interface with Li, the driving voltage of the OLED was reduced dramatically from 24.5 to 3.2 V at a luminance of 1000 cd/m2. The external quantum efficiency was also enhanced from 3.4 to 12.9%. Surface analyses showed that the Li doping significantly lowers the lowest unoccupied molecular orbital level of the ETL, thereby reducing the electron injection barrier and facilitating electron injection from the cathode. Impedance spectroscopy analyses performed on electron-only devices (EODs) revealed the existence of distributed trap states with a well-defined activation energy, which is successfully described by the Havriliak-Negami capacitance functions and the temperature-independent frequency dispersion parameters. In particular, the graphene EOD showed a unique high-frequency feature as compared to the indium tin oxide one, which could be explained by an additional parallel capacitance element.

19.
Opt Express ; 26(2): 617-626, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401944

RESUMEN

We propose an effective way to enhance the out-coupling efficiencies of organic light-emitting diodes (OLEDs) using graphene as a transparent electrode. In this study, we investigated the detrimental adsorption and internal optics occurring in OLEDs with graphene anodes. The optical out-coupling efficiencies of previous OLEDs with transparent graphene electrodes barely exceeded those of OLEDs with conventional transparent electrodes because of the weak microcavity effect. To overcome this issue, we introduced an internal random scattering layer for light extraction and reduced the optical absorption of the graphene by reducing the number of layers in the multilayered graphene film. The efficiencies of the graphene-OLEDs increased significantly with decreasing the number of graphene layers, strongly indicating absorption reduction. The maximum light extraction efficiency was obtained by using a single-layer graphene electrode together with a scattering layer. As a result, a widened angular luminance distribution with a remarkable external quantum efficiency and a luminous efficacy enhancement of 52.8% and 48.5%, respectively, was achieved. Our approach provides a demonstration of graphene-OLED having a performance comparable to that of conventional OLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...