Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(27): e2314211, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558476

RESUMEN

The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO1.8H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO1.8H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi5+, leading to increased metal-oxygen covalency and that the oxophilic Ce3+/4+ redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO1.8H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm-2. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564101

RESUMEN

Van der Waals (vdW) heterostructures based on two-dimensional (2D) transition metal dichalcogenides (TMDCs), particularly WS2/MoS2 heterostructures with type-II band alignments, are considered as ideal candidates for future functional optoelectronic applications owing to their efficient exciton dissociation and fast charge transfers. These physical properties of vdW heterostructures are mainly influenced by the interlayer coupling occurring at the interface. However, a comprehensive understanding of the interlayer coupling in vdW heterostructures is still lacking. Here, we present a detailed analysis of the low-frequency (LF) Raman modes, which are sensitive to interlayer coupling, in bilayers of MoS2, WS2, and WS2/MoS2 heterostructures directly grown using chemical vapor deposition to avoid undesirable interfacial contamination and stacking mismatch effects between the monolayers. We clearly observe two distinguishable LF Raman modes, the interlayer in-plane shear and out-of-plane layer-breathing modes, which are dependent on the twisting angles and interface quality between the monolayers, in all the 2D bilayered structures, including the vdW heterostructure. In contrast, LF modes are not observed in the MoS2 and WS2 monolayers. These results indicate that our directly grown 2D bilayered TMDCs with a favorable stacking configuration and high-quality interface can induce strong interlayer couplings, leading to LF Raman modes.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159747

RESUMEN

In this work, we designed and prepared a hierarchically assembled 3D plasmonic metal-dielectric-metal (PMDM) hybrid nano-architecture for high-performance surface-enhanced Raman scattering (SERS) sensing. The fabrication of the PMDM hybrid nanostructure was achieved by the thermal evaporation of Au film followed by thermal dewetting and the atomic layer deposition (ALD) of the Al2O3 dielectric layer, which is crucial for creating numerous nanogaps between the core Au and the out-layered Au nanoparticles (NPs). The PMDM hybrid nanostructures exhibited strong SERS signals originating from highly enhanced electromagnetic (EM) hot spots at the 3 nm Al2O3 layer serving as the nanogap spacer, as confirmed by the finite-difference time-domain (FDTD) simulation. The PMDM SERS substrate achieved an outstanding SERS performance, including a high sensitivity (enhancement factor, EF of 1.3 × 108 and low detection limit 10-11 M) and excellent reproducibility (relative standard deviation (RSD) < 7.5%) for rhodamine 6G (R6G). This study opens a promising route for constructing multilayered plasmonic structures with abundant EM hotspots for the highly sensitive, rapid, and reproducible detection of biomolecules.

4.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830073

RESUMEN

In this work, we develop a Ag@Al2O3@Ag plasmonic core-shell-satellite (PCSS) to achieve highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) detection of probe molecules. To fabricate PCSS nanostructures, we employ a simple hierarchical dewetting process of Ag films coupled with an atomic layer deposition (ALD) method for the Al2O3 shell. Compared to bare Ag nanoparticles, several advantages of fabricating PCSS nanostructures are discovered, including high surface roughness, high density of nanogaps between Ag core and Ag satellites, and nanogaps between adjacent Ag satellites. Finite-difference time-domain (FDTD) simulations of the PCSS nanostructure confirm an enhancement in the electromagnetic field intensity (hotspots) in the nanogap between the Ag core and the satellite generated by the Al2O3 shell, due to the strong core-satellite plasmonic coupling. The as-prepared PCSS-based SERS substrate demonstrates an enhancement factor (EF) of 1.7 × 107 and relative standard deviation (RSD) of ~7%, endowing our SERS platform with highly sensitive and reproducible detection of R6G molecules. We think that this method provides a simple approach for the fabrication of PCSS by a solid-state technique and a basis for developing a highly SERS-active substrate for practical applications.


Asunto(s)
Óxido de Aluminio/química , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman
5.
ACS Appl Mater Interfaces ; 13(2): 3426-3434, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410322

RESUMEN

We report the optical phonon shifts induced by phase transition effects of vanadium dioxide (VO2) in monolayer molybdenum disulfide (MoS2) when interfacing with a VO2 film showing a metal-insulator transition coupled with structural phase transition (SPT). To this end, the monolayer MoS2 directly synthesized on a SiO2/Si substrate by chemical vapor deposition was first transferred onto a VO2/c-Al2O3 substrate in which the VO2 film was prepared by a sputtering method. We compared the MoS2 interfaced with the VO2 film with the as-synthesized MoS2 by using Raman spectroscopy. The temperature-dependent Raman scattering characteristics exhibited the distinct phonon behaviors of the E2g1 and A1g modes in the monolayer MoS2. Specifically, for the as-synthesized MoS2, there were no Raman shifts for each mode, but the enhancement in the Raman intensities of E2g1 and A1g modes was clearly observed with increasing temperature, which could be interpreted by the significant contribution of the interface optical interference effect. In contrast, the red-shifts of both the E2g1 and A1g modes for the MoS2 transferred onto VO2 were clearly observed across the phase transition of VO2, which could be explained in terms of the in-plane tensile strain effect induced by the SPT and the enhancement of electron-phonon interactions due to an increased electron density at the MoS2/VO2 interface through the electronic phase transition. This study provides further insights into the influence of interfacial hybridization for the heterogeneous integration of 2D transition-metal dichalcogenides and strongly correlated materials.

6.
Materials (Basel) ; 13(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936145

RESUMEN

We investigate the effect of applied gate and drain voltages on the charge transport properties in a zinc oxide (ZnO) nanowire field effect transistor (FET) through temperature- and voltage-dependent measurements. Since the FET based on nanowires is one of the fundamental building blocks in potential nanoelectronic applications, it is important to understand the transport properties relevant to the variation in electrically applied parameters for devices based on nanowires with a large surface-to-volume ratio. In this work, the threshold voltage shift due to a drain-induced barrier-lowering (DIBL) effect was observed using a Y-function method. From temperature-dependent current-voltage (I-V) analyses of the fabricated ZnO nanowire FET, it is found that space charge-limited conduction (SCLC) mechanism is dominant at low temperatures and low voltages; in particular, variable-range hopping dominates the conduction in the temperature regime from 4 to 100 K, whereas in the high-temperature regime (150-300 K), the thermal activation transport is dominant, diminishing the SCLC effect. These results are discussed and explained in terms of the exponential distribution and applied voltage-induced variation in the charge trap states at the band edge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...