Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(1): 16, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184594

RESUMEN

Viruses have evolved to control mitochondrial quality and content to facilitate viral replication. Mitophagy is a selective autophagy, in which the damaged or unnecessary mitochondria are removed, and thus considered an essential mechanism for mitochondrial quality control. Although mitophagy manipulation by several RNA viruses has recently been reported, the effect of mitophagy regulation by varicella zoster virus (VZV) remains to be fully determined. In this study, we showed that dynamin-related protein-1 (DRP1)-mediated mitochondrial fission and subsequent PINK1/Parkin-dependent mitophagy were triggered during VZV infection, facilitating VZV replication. In addition, VZV glycoprotein E (gE) promoted PINK1/Parkin-mediated mitophagy by interacting with LC3 and upregulating mitochondrial reactive oxygen species. Importantly, VZV gE inhibited MAVS oligomerization and STING translocation to disrupt MAVS- and STING-mediated interferon (IFN) responses, and PINK1/Parkin-mediated mitophagy was required for VZV gE-mediated inhibition of IFN production. Similarly, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-mediated mitophagy induction led to increased VZV replication but attenuated IFN production in a three-dimensional human skin organ culture model. Our results provide new insights into the immune evasion mechanism of VZV gE via PINK1/Parkin-dependent mitophagy.


Asunto(s)
Inmunidad Innata , Mitofagia , Humanos , Carbonil Cianuro m-Clorofenil Hidrazona , Ubiquitina-Proteína Ligasas , Antivirales , Proteínas Quinasas
2.
Cancers (Basel) ; 15(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958462

RESUMEN

Complex karyotype (CK) is associated with a poor prognosis in both acute myeloid leukemia (AML) and myelodysplastic syndrome with excess blasts (MDS-EB). Transcriptomic analyses have improved our understanding of the disease and risk stratification of myeloid neoplasms; however, CK-specific gene expression signatures have been rarely investigated. In this study, we developed and validated a CK-specific gene expression signature. Differential gene expression analysis between the CK and non-CK groups using data from 348 patients with AML and MDS-EB from four cohorts revealed enrichment of the downregulated genes localized on chromosome 5q or 7q, suggesting that haploinsufficiency due to the deletion of these chromosomes possibly underlies CK pathogenesis. We built a robust transcriptional model for CK prediction using LASSO regression for gene subset selection and validated it using the leave-one-out cross-validation method for fitting the logistic regression model. We established a 10-gene CK signature (CKS) predictive of CK with high predictive accuracy (accuracy 94.22%; AUC 0.977). CKS was significantly associated with shorter overall survival in three independent cohorts, and was comparable to that of previously established risk stratification models for AML. Furthermore, we explored of therapeutic targets among the genes comprising CKS and identified the dysregulated expression of superoxide dismutase 1 (SOD1) gene, which is potentially amenable to SOD1 inhibitors.

3.
Front Immunol ; 14: 1203645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781396

RESUMEN

Zika virus (ZIKV) remains a global public health threat with the potential risk of a future outbreak. Since viral infections are known to exploit mitochondria-mediated cellular processes, we investigated the effects of ZIKV infection in trophoblast cells in terms of the different mitochondrial quality control pathways that govern mitochondrial integrity and function. Here we demonstrate that ZIKV (PRVABC59) infection of JEG-3 trophoblast cells manipulates mitochondrial dynamics, mitophagy, and formation of mitochondria-derived vesicles (MDVs). Specifically, ZIKV nonstructural protein 4A (NS4A) translocates to the mitochondria, triggers mitochondrial fission and mitophagy, and suppresses mitochondrial associated antiviral protein (MAVS)-mediated type I interferon (IFN) response. Furthermore, proteomics profiling of small extracellular vesicles (sEVs) revealed an enrichment of mitochondrial proteins in sEVs secreted by ZIKV-infected JEG-3 cells, suggesting that MDV formation may also be another mitochondrial quality control mechanism manipulated during placental ZIKV infection. Altogether, our findings highlight the different mitochondrial quality control mechanisms manipulated by ZIKV during infection of placental cells as host immune evasion mechanisms utilized by ZIKV at the placenta to suppress the host antiviral response and facilitate viral infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Femenino , Embarazo , Humanos , Dinámicas Mitocondriales , Trofoblastos , Mitofagia , Línea Celular Tumoral , Placenta , Replicación Viral , Antivirales/farmacología , Mitocondrias
4.
Hum Vaccin Immunother ; 19(1): 2210961, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37218543

RESUMEN

The currently used Japanese Oka and Korean MAV/06-attenuated varicella vaccine strains belong to clade 2 genotype varicella-zoster viruses (VZV). More than seven clades of VZV exist worldwide. In this study, we investigated the cross-reactivity of antibodies induced by clade 2 genotype vaccines against VZV strains belonging to clades 1, 2, 3, and 5 using a fluorescent antibody to membrane antigen (FAMA) test. Among 59 donors, 29 were vaccinated with the MAV/06 strain MG1111 (GC Biopharma, South Korea) and the other 30 were vaccinated with the Oka strain VARIVAX (Merck, USA). The sera were titrated using FAMA tests prepared with six different VZV strains (two vaccine strains, one wild-type clade 2 strain, and one each of clade 1, 3, and 5 strains). The ranges of geometric mean titers (GMTs) of FAMA against six different strains were 158.7-206.5 and 157.6-238.9 in MG1111 and VARIVAX groups, respectively. GMTs of the MG1111 group against all six strains were similar; however, GMTs of the VARIVAX group showed differences of approximately 1.5-fold depending on the strains. Nevertheless, the GMTs of the two vaccinated groups for the same strain were not significantly different. These results suggest that both MG1111 and VARIVAX vaccinations induce cross-reactive humoral immunity against other clades of VZV.


Asunto(s)
Varicela , Vacunas Virales , Humanos , Herpesvirus Humano 3/genética , Vacuna contra la Varicela , Varicela/prevención & control , Inmunidad Humoral , Vacunas Atenuadas , Antígenos Virales
5.
J Microbiol Biotechnol ; 33(5): 582-590, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36864501

RESUMEN

Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.


Asunto(s)
Infecciones por Coxsackievirus , ADN Helicasas , Humanos , Células HeLa , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Gránulos de Estrés , Replicación Viral/fisiología , Muerte Celular , Enterovirus Humano B
6.
J Microbiol ; 61(2): 259-270, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36808561

RESUMEN

Varicella-Zoster virus (VZV) causes varicella in primary infection of children and zoster during reactivation in adults. Type I interferon (IFN) signaling suppresses VZV growth, and stimulator of interferon genes (STING) plays an important role in anti-VZV responses by regulating type I IFN signaling. VZV-encoded proteins are shown to inhibit STING-mediated activation of the IFN-ß promoter. However, the mechanisms by which VZV regulates STING-mediated signaling pathways are largely unknown. In this study, we demonstrate that the transmembrane protein encoded by VZV open reading frame (ORF) 39 suppresses STING-mediated IFN-ß production by interacting with STING. In IFN-ß promoter reporter assays, ORF39 protein (ORF39p) inhibited STING-mediated activation of the IFN-ß promoter. ORF39p interacted with STING in co-transfection assays, and this interaction was comparable to that of STING dimerization. The cytoplasmic N-terminal 73 amino acids region of ORF39P was not necessary for ORF39 binding and suppression of STING-mediated IFN-ß activation. ORF39p also formed a complex containing both STING and TBK1. A recombinant VZV expressing HA-tagged ORF39 was produced using bacmid mutagenesis and showed similar growth to its parent virus. During HA-ORF39 virus infection, the expression level of STING was markedly reduced, and HA-ORF39 interacted with STING. Moreover, HA-ORF39 also colocalized with glycoprotein K (encoded by ORF5) and STING at the Golgi during virus infection. Our results demonstrate that the transmembrane protein ORF39p of VZV plays a role in evading the type I IFN responses by suppressing STING-mediated activation of the IFN-ß promoter.


Asunto(s)
Herpes Zóster , Interferón beta , Proteínas de la Membrana , Humanos , Herpesvirus Humano 3/genética , Interferón beta/genética , Interferón beta/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal
7.
Genes Genomics ; 45(3): 347-358, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35917089

RESUMEN

BACKGROUND: Umbilical cord mesenchymal stem cells (UCMSC) are subsets of multipotent stem cells involved in immune modulation, tissue regeneration, and antimicrobial defense. Cellular senescence is associated with the onset of aging-related diseases and small extracellular vesicles (sEVs) are important mediators of senescence and aging. OBJECTIVE: However, little is known about the role and function of microRNAs (miRNAs) carried by UCMSC-derived sEVs. To analyze the expression profiles of miRNAs secreted by senescent UCMSC, small RNA sequencing of the miRNAs within the sEVs was performed in this study. METHODS: UCMSC cultures underwent serial passaging beyond passage number 20 to achieve replicative senescence, which was confirmed by various methods, including increased senescence-associated ß-gal staining and cytokine secretion levels. sEVs derived from non-senescent and senescent UCMSC were isolated and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblot analysis. RESULTS: Small RNA sequencing of the miRNAs within the sEVs revealed senescence-associated differences in the miRNA composition, as shown by the upregulation of miR-122-5p and miR-146a-5p, and downregulation of miR-125b-5p and miR-29-3p. In addition, total RNA sequencing analysis showed that PENK, ITGA8, and TSIX were upregulated, whereas AKR1B10, UNC13D, and IL21R were downregulated by replicative senescence in UCMSC. In sEVs, upregulated genes were linked to downregulated miRNAs, and vice versa. In the gene-concept network analysis, five gynecologic terms were retrieved. CONCLUSIONS: The study provides an insight into the cellular characteristics of UCMSC following replicative senescence and emphasizes the importance of monitoring passage numbers of UCMSC for further therapeutic use.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Femenino , Humanos , MicroARNs/genética , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Análisis de Secuencia de ARN
8.
ACS Omega ; 7(50): 46146-46155, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570237

RESUMEN

d-amino acid-based surfactants (d-AASs) were synthesized and their antimicrobial activity was evaluated. N-α-lauroyl-d-arginine ethyl ester hydrochloride (d-LAE), d-proline dodecyl ester (d-PD), and d-alanine dodecyl ester (d-AD) were found to have antibacterial activity against both Gram-positive and -negative bacteria, but less efficacy against Gram-negative bacteria. For these reasons, combining antimicrobial agents with nanoparticles is a promising technique for improving their antibacterial properties to eliminate drug-resistant pathogens. d-LAE coated on gold (AuNP) and silica (SiNP) nanoparticles has more efficient antibacterial activity than that of d-LAE alone. However, unlike d-LAE, d-PD has enhanced antibacterial activity upon being coated on AuNP. The antibacterial d-AASs and their nanocomposites with nanoparticles were synthesized in an environmentally friendly manner and are expected to be valuable new antimicrobial agents against multidrug-resistant (MDR) pathogens.

9.
J Microbiol Biotechnol ; 32(11): 1382-1389, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36330743

RESUMEN

Asterias pectinifera, a species of starfish and cause of concern in the aquaculture industry, was recently identified as a source of non-toxic and highly water-soluble collagen peptides. In this study, we investigated the antioxidant and anti-photoaging functions of compounds formulated using collagen peptides from extracts of Asterias pectinifera and Halocynthia roretzi (AH). Our results showed that AH compounds have various skin protective functions, including antioxidant effects, determined by measuring the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl radicals, as well as anti-melanogenic effects, determined by measuring tyrosinase inhibition activity. To determine whether ethosome-encapsulated AH compounds (E(AH)) exert ultraviolet (UV)-protective effects, human dermal fibroblasts or keratinocytes were incubated with E(AH) before and after exposure to UVA or UVB. E(AH) treatment led to inhibition of photoaging-induced secretion of matrix metalloproteinase-1 and interleukin-6 and -8, which are associated with inflammatory responses during UV irradiation. Finally, the antibacterial effects of AH and E(AH) were confirmed against both gram-negative and gram-positive bacteria. Our results indicate that E(AH) has the potential for use in the development of cosmetics with a range of skin protective functions.


Asunto(s)
Asterias , Envejecimiento de la Piel , Enfermedades de la Piel , Animales , Humanos , Rayos Ultravioleta , Colágeno , Piel/efectos de la radiación , Fibroblastos , Extractos Vegetales/farmacología , Péptidos/farmacología , Antibacterianos/farmacología
10.
Front Cell Infect Microbiol ; 12: 850744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558099

RESUMEN

The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.


Asunto(s)
Coronavirus , Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Antivirales/metabolismo , Antivirales/farmacología , Humanos , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical
11.
J Invest Dermatol ; 142(10): 2570-2579.e6, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483653

RESUMEN

Although small extracellular vesicles (sEV) have been reported to play an important role in cellular senescence and aging, little is known about the potential role and function of microRNAs (miRNAs) contained within the sEV. To determine the senescence-associated factors secreted from sEV of human dermal fibroblasts (HDFs), we isolated and characterized sEV from nonsenescent versus that from senescent HDFs. Small RNA-sequencing analysis identified many enriched miRNAs in sEV of senescent HDF, as shown by the upregulation of miR-10a, miR-30c, and miR-451a and downregulation of miR-128, miR-184, miR-200c, and miR-125a. Overexpression of miR-10a, miR-30c, and miR-451a induced an aging phenotype in HDFs, whereas inhibition of these miRNAs reduced senescent-like phenotypes in senescent HDFs. Moreover, treatment with sEV or sEV-containing conditioned medium promoted cellular senescence in HDFs, whereas sEV depletion abrogated prosenescence effects of the senescent HDF secretome. Interestingly, prosenescence sEV miRNAs were found to have an essential role in regulating ROS production and mitophagy activation. Taken together, our results revealed miR-10a, miR-30c, and miR-451a as prosenescence factors that are differentially expressed in sEV of senescent HDFs, showing the essential role of sEV miRNAs in the biological processes of aging.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Senescencia Celular/fisiología , Medios de Cultivo Condicionados , Fibroblastos , Humanos , MicroARNs/fisiología , Especies Reactivas de Oxígeno
12.
J Yeungnam Med Sci ; 39(2): 89-97, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35152616

RESUMEN

More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.

13.
J Microbiol ; 60(3): 290-299, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35122601

RESUMEN

With global expansion of the COVID-19 pandemic and the emergence of new variants, extensive efforts have been made to develop highly effective antiviral drugs and vaccines against SARS-CoV-2. The interactions of coronaviruses with host antiviral interferon pathways ultimately determine successful viral replication and SARS-CoV-2-induced pathogenesis. Innate immune receptors play an essential role in host defense against SARS-CoV-2 via the induction of IFN production and signaling. Here, we summarize the recent advances in innate immune sensing mechanisms of SARS-CoV-2 and various strategies by which SARS-CoV-2 antagonizes antiviral innate immune signaling pathways, with a particular focus on mechanisms utilized by multiple SARS-CoV-2 proteins to evade interferon induction and signaling in host cell. Understanding the underlying immune evasion mechanisms of SARS-CoV-2 is essential for the improvement of vaccines and therapeutic strategies.


Asunto(s)
COVID-19 , Evasión Inmune , Interferones/inmunología , Factores de Restricción Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Humanos , Inmunidad Innata , Pandemias , SARS-CoV-2
14.
Front Cell Infect Microbiol ; 11: 757341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568102

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2021.704494.].

15.
Viruses ; 13(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578425

RESUMEN

Nonstructural protein 1 (NS1) of influenza virus (IFV) is essential for evading interferon (IFN)-mediated antiviral responses, thereby contributing to the pathogenesis of influenza. Mitophagy is a type of autophagy that selectively removes damaged mitochondria. The role of NS1 in IFV-mediated mitophagy is currently unknown. Herein, we showed that overexpression of NS1 protein led to enhancement of mitophagy. Mitophagy induction via carbonyl cyanide 3-chlorophenylhydrazone treatment in IFV-infected A549 cells led to increased viral replication efficiency, whereas the knockdown of PTEN-induced kinase 1 (PINK1) led to the opposite effect on viral replication. Overexpression of NS1 protein led to changes in mitochondrial dynamics, including depolarization of mitochondrial membrane potential. In contrast, infection with NS1-deficient virus resulted in impaired mitochondrial fragmentation, subsequent mitolysosomal formation, and mitophagy induction, suggesting an important role of NS1 in mitophagy. Meanwhile, NS1 protein increased the phosphorylation of Unc-51-like autophagy activating kinase 1 (ULK1) and the mitochondrial expression of BCL2- interacting protein 3 (BNIP3), both of which were found to be important for IFV-mediated mitophagy. Overall, these data highlight the importance of IFV NS1, ULK1, and BNIP3 during mitophagy activation.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Dinámicas Mitocondriales , Mitofagia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Células A549 , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas no Estructurales Virales/efectos de los fármacos , Replicación Viral
16.
Front Cell Infect Microbiol ; 11: 704494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295842

RESUMEN

Coxsackievirus B3 (CVB3) is a common enterovirus that causes systemic inflammatory diseases, such as myocarditis, meningitis, and encephalitis. CVB3 has been demonstrated to subvert host cellular responses via autophagy to support viral replication in neural stem cells. Mitophagy, a specialized form of autophagy, contributes to mitochondrial quality control via degrading damaged mitochondria. Here, we show that CVB3 infection induces mitophagy in human neural progenitor cells, HeLa and H9C2 cardiomyocytes. In particular, CVB3 infection triggers mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin/LC3 translocation to the mitochondria. Rapamycin or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to increased CVB3 RNA copy number in a dose-dependent manner, suggesting enhanced viral replication via autophagy/mitophagy activation, whereas knockdown of PTEN-induced putative kinase protein 1(PINK1) led to impaired mitophagy and subsequent reduction in viral replication. Furthermore, CCCP treatment inhibits the interaction between mitochondrial antiviral signaling protein (MAVS) and TANK-binding kinase 1(TBK1), thus contributing to the abrogation of type I and III interferon (IFN) production, suggesting that mitophagy is essential for the inhibition of interferon signaling. Our findings suggest that CVB3-mediated mitophagy suppresses IFN pathways by promoting fragmentation and subsequent sequestration of mitochondria by autophagosomes.


Asunto(s)
Interferones , Mitofagia , Replicación Viral , Antivirales/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/fisiología , Células HeLa , Humanos , Interferones/farmacología
17.
Cells ; 10(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801464

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) that has resulted in the current pandemic. The lack of highly efficacious antiviral drugs that can manage this ongoing global emergency gives urgency to establishing a comprehensive understanding of the molecular pathogenesis of SARS-CoV-2. We characterized the role of the nucleocapsid protein (N) of SARS-CoV-2 in modulating antiviral immunity. Overexpression of SARS-CoV-2 N resulted in the attenuation of retinoic acid inducible gene-I (RIG-I)-like receptor-mediated interferon (IFN) production and IFN-induced gene expression. Similar to the SARS-CoV-1 N protein, SARS-CoV-2 N suppressed the interaction between tripartate motif protein 25 (TRIM25) and RIG-I. Furthermore, SARS-CoV-2 N inhibited polyinosinic: polycytidylic acid [poly(I:C)]-mediated IFN signaling at the level of Tank-binding kinase 1 (TBK1) and interfered with the association between TBK1 and interferon regulatory factor 3 (IRF3), subsequently preventing the nuclear translocation of IRF3. We further found that both type I and III IFN production induced by either the influenza virus lacking the nonstructural protein 1 or the Zika virus were suppressed by the SARS-CoV-2 N protein. Our findings provide insights into the molecular function of the SARS-CoV-2 N protein with respect to counteracting the host antiviral immune response.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteína 58 DEAD Box/metabolismo , Interferones/metabolismo , Receptores Inmunológicos/metabolismo , SARS-CoV-2/metabolismo , Proteína 58 DEAD Box/genética , Interacciones Huésped-Patógeno/genética , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Interferones/genética , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Fosfoproteínas/metabolismo , Poli C/farmacología , Poli I/farmacología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Inmunológicos/genética , SARS-CoV-2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba , Virus Zika/genética , Virus Zika/metabolismo
18.
J Microbiol Biotechnol ; 31(2): 226-232, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397830

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFN-mediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.


Asunto(s)
Evasión Inmune , Interferón Tipo I/inmunología , Phlebovirus/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Síndrome de Trombocitopenia Febril Grave/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Phlebovirus/genética , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Trombocitopenia Febril Grave/genética , Síndrome de Trombocitopenia Febril Grave/virología , Transducción de Señal , Proteínas no Estructurales Virales/genética
19.
Cells ; 9(11)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207682

RESUMEN

Zika virus (ZIKV) remains as a public health threat due to the congenital birth defects the virus causes following infection of pregnant women. Congenital microcephaly is among the neurodevelopmental disorders the virus can cause in newborns, and this defect has been associated with ZIKV-mediated cytopathic effects in human neural progenitor cells (hNPCs). In this study, we investigated the cellular changes that occur in hNPCs in response to ZIKV (African and Asian lineages)-induced cytopathic effects. Transmission electron microscopy showed the progress of cell death as well as the formation of numerous vacuoles in the cytoplasm of ZIKV-infected hNPCs. Infection with both African and Asian lineages of ZIKV induced apoptosis, as demonstrated by the increased activation of caspase 3/7, 8, and 9. Increased levels of proinflammatory cytokines and chemokines (IL-6, IL-8, IL-1ß) were also detected in ZIKV-infected hNPCs, while z-VAD-fmk-induced inhibition of cell death suppressed ZIKV-mediated cytokine production in a dose-dependent manner. ZIKV-infected hNPCs also displayed significantly elevated gene expression levels of the pro-apoptotic Bcl2-mediated family, in particular, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Furthermore, TRAIL signaling led to augmented ZIKV-mediated cell death and the knockdown of TRAIL-mediated signaling adaptor, FADD, resulted in enhanced ZIKV replication. In conclusion, our findings provide cellular insights into the cytopathic effects induced by ZIKV infection of hNPCs.


Asunto(s)
Apoptosis/fisiología , Células-Madre Neurales/virología , Factores de Necrosis Tumoral/metabolismo , Infección por el Virus Zika/virología , Virus Zika/patogenicidad , Apoptosis/genética , Humanos , Recién Nacido , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Replicación Viral/fisiología , Virus Zika/genética , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/patología
20.
Emerg Microbes Infect ; 9(1): 2061-2075, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32902370

RESUMEN

Zika virus (ZIKV) infection during pregnancy is associated with congenital brain abnormalities, a finding that highlights the urgent need to understand mother-to-fetus transmission mechanisms. Human umbilical cord mesenchymal stem cells (hUCMSCs) are susceptible to ZIKV infection but the underlying mechanisms of viral susceptibility remain largely unexplored. In this study, we have characterized and compared host mRNA and miRNA expression profiles in hUCMSCs after infection with two lineages of ZIKV, African (MR766) and Asian (PRVABC59). RNA sequencing analysis identified differentially expressed genes involved in anti-viral immunity and mitochondrial dynamics following ZIKV infection. In particular, ZIKV-infected hUCMSCs displayed mitochondrial elongation and the treatment of hUCMSCs with mitochondrial fission inhibitor led to a dose-dependent increase in ZIKV gene expression and decrease in anti-viral signalling pathways. Moreover, small RNA sequencing analysis identified several significantly up- or down-regulated microRNAs. Interestingly, miR-142-5p was significantly downregulated upon ZIKV infection, whereas cellular targets of miR-142-5p, IL6ST and ITGAV, were upregulated. Overexpression of miR-142-5p resulted in the suppression of ZIKV replication. Furthermore, blocking ITGAV expression resulted in a significant suppression of ZIKV binding to cells, suggesting a potential role of ITGAV in ZIKV entry. In conclusion, these results demonstrate both common and specific host responses to African and Asian ZIKV lineages and indicate miR-142-5p as a key regulator of ZIKV replication in the umbilical cords.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/genética , Mitocondrias/metabolismo , ARN Mensajero/genética , Infección por el Virus Zika/genética , Células A549 , Animales , Antivirales/inmunología , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata , Células Madre Mesenquimatosas/virología , Mitocondrias/virología , Análisis de Secuencia de ARN , Transducción de Señal , Cordón Umbilical/virología , Células Vero , Acoplamiento Viral , Internalización del Virus , Replicación Viral , Virus Zika , Infección por el Virus Zika/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA