Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254990

RESUMEN

Niemann-Pick disease type C (NPC) is a fatal neurodegenerative condition caused by genetic mutations of the NPC1 or NPC2 genes that encode the NPC1 and NPC2 proteins, respectively, which are believed to be responsible for cholesterol efflux from late-endosomes/lysosomes. The pathogenic mechanisms that lead to neurodegeneration in NPC are not well understood. There are, however, well-defined spatiotemporal patterns of neurodegeneration that may provide insight into the pathogenic process. For example, the cerebellum is severely affected from early disease stages, compared with cerebral regions, which remain relatively spared until later stages. Using a genome-wide transcriptome analysis, we have recently identified an aberrant pattern of interferon activation in the cerebella of pre-symptomatic Npc1-/- mice. Here, we carried out a comparative transcriptomic analysis of cerebral cortices and cerebella of pre-symptomatic Npc1-/- mice and age-matched controls to identify differences that may help explain the pathological progression within the NPC brain. We report lower cerebral expression of genes within interferon signaling pathways, and significant differences in the regulation of oxidative stress, compared with the cerebellum. Our findings suggest that a delayed onset of interferon signaling, possibly linked to lower oxidative stress, may account for the slower onset of cerebral cortical pathology in the disease.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Animales , Ratones , Enfermedad de Niemann-Pick Tipo C/genética , Cerebelo , Corteza Cerebral , Estrés Oxidativo , Interferones/genética
2.
Physiol Behav ; 240: 113533, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293404

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and is often accompanied by increased anxiety. Although AD is a heterogeneous disease, dysregulation of inflammatory pathways is a consistent event. Interestingly, the amyloid precursor protein (APP), which is the source of the amyloid peptide Aß, is also necessary for the efficient regulation of the innate immune response. Here, we hypothesize that loss of APP function in mice would lead to cognitive loss and anxiety behavior, both of which are typically present in AD, as well as changes in the expression of inflammatory mediators. To test this hypothesis, we performed open field, Y-maze and novel object recognition tests on 12-18-week-old male and female wildtype and AppKO mice to measure thigmotaxis, short-term spatial memory and long-term recognition memory. We then performed a quantitative multiplexed immunoassay to measure levels of 32 cytokines/chemokines associated with AD and anxiety. Our results showed that AppKO mice, compared to wildtype controls, experienced increased thigmotactic behavior but no memory impairments, and this phenotype correlated with increased IP-10 and IL-13 levels. Future studies will determine whether dysregulation of these inflammatory mediators contributes to pathogenesis in AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Quimiocina CXCL10/genética , Modelos Animales de Enfermedad , Femenino , Interleucina-13 , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Neuroinflammation ; 16(1): 269, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847862

RESUMEN

BACKGROUND: Niemann-Pick disease type C (NPC) is a progressive neurodegenerative condition that results in early fatality. NPC is inherited in an autosomal recessive pattern from mutations in NPC1 or NPC2 genes. The etiology of NPC is poorly defined. In that regard, neuroinflammation occurs early in the disease and we have recently unveiled an atypical pattern of interferon signaling in pre-symptomatic Npc1-/- mice, with microglial activation, anti-viral response, activation of antigen-presenting cells, and activation and chemotaxis of T lymphocytes as the key affected pathologic pathways. Furthermore, IP-10/CXCL10, a potent IFN-γ-responsive cytokine, was identified as the potential mediator of these early inflammatory abnormalities. Here, we asked whether this aberrant signaling may be exacerbated by the loss of amyloid precursor protein (APP) function, a loss known to shorten lifespan and accelerate neurodegeneration in Npc1-/- mice. METHODS: We carried out genome-wide comparative transcriptome analyses of pre-symptomatic Npc1+/+/App+/+, Npc1-/-/App+/+, Npc1+/+/App-/-, and Npc1-/-/App-/- mouse cerebella to identify biological pathways in the NPC brain further affected by the loss of APP. Gene Set Enrichment Analysis and Ingenuity Pathway Analysis were utilized for molecular mapping and functional upstream pathway analyses of highly differentially expressed genes. We simultaneously measured the expression of 32 inflammatory cytokines and chemokines in the cerebella from these mice, including those identified in our genome-wide analyses. Finally, we used immunohistochemistry to measure T cell infiltration in the cerebellum. RESULTS: Expression of IFN-γ- and IFN-α-responsive genes in pre-symptomatic Npc1-/-/App-/- cerebella is upregulated compared with Npc1-/-/App+/+ mice, compounding the dysregulation of microglial activation, anti-viral response, activation of antigen-presenting cells, and T-lymphocyte activation and chemotaxis pathways present in the NPC brain. Multiplex protein analysis further showed elevated expression of IP-10/CXCL10, a potent downstream effector of IFN-γ, as well as RANTES/CCL5, eotaxin/CCL11 and IL-10, prior to symptomatic onset in Npc1-/-/App-/- cerebella, compared with Npc1-/-/App+/+mice. In the terminal disease stage, loss of APP caused pleiotropic differential expression of the vast majority of cytokines evaluated. Finally, we present evidence of T cell infiltration in Npc1-/-/App-/- cerebella. CONCLUSIONS: Loss of APP exacerbates the pathogenic neuroinflammation that occurs prior to symptomatic onset in the NPC brain. These findings shed new light on the function of APP as a cytoprotective modulator in the CNS, offering potential evidence-based therapies against NPC.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Animales , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados
4.
Neurosci Lett ; 706: 43-50, 2019 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-31067492

RESUMEN

Niemann-Pick disease type C (NPC) is a fatal neurodegenerative condition with no FDA-approved therapy. Previous studies demonstrated that neuroinflammation is an early pathologic event and a disease modifier of NPC, affecting symptomatic onset and overall lifespan. Therefore, NPC-specific anti-inflammatory therapy may result in clinical benefit. However, to date, the initial trigger of the inflammatory onset and the mechanism driving the sustained chronic neuroinflammation remain unknown. In this study, we utilized a genome-wide transcriptome analysis to identify the key pathways involved in early NPC. Our results showed that an atypical pattern of interferon downstream signaling that involves both IFN-γ- and IFN-α-responsive genes is activated in pre-symptomatic Npc1-/- cerebella. Functional analysis of the differentially expressed genes highlighted microglial activation, anti-viral response, and T-lymphocyte activation and chemotaxis pathways. Multiplex protein analysis confirmed that a potent IFN-γ-responsive cytokine, IP-10/CXCL10 was significantly upregulated in the pre-symptomatic stage and further exacerbated in the terminal stage. In addition, several IFN-γ-responsive cytokines were elevated in the terminal stage Npc1-/- cerebella, including MIG/CXCL9, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, RANTES/CCL5, M-CSF, and IL-1α. Together, our results describe a novel activation pattern of interferon downstream signaling in pre-symptomatic NPC, as well as key inflammatory mediators that could serve as potential targets for NPC-specific anti-inflammatory therapy.


Asunto(s)
Cerebelo/metabolismo , Interferones/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Transducción de Señal/genética , Animales , Citocinas/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Interferones/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Síntomas Prodrómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA