Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(32): 21068-21074, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30074033

RESUMEN

DNAs form various structures through hydrogen-bonding, base-stacking and electrostatic interactions. Although these noncovalent interactions are known to be cooperative in stabilizing a G-quadruplex (G4) structure of DNA, we find from all-atom molecular dynamics simulations that the electrostatic charge-dipole interaction is competitive with both hydrogen-bonding and base-stacking interactions. For the thrombin-binding aptamer (TBA) forming a chair-type antiparallel G4 structure, we have examined effects of an intercalating metal ion [K+, Sr2+, Mn+: an ion having a charge of n+ (n = 1-4) with the ionic radius of K+] on structural properties and noncovalent interactions. When K+ in the TBA·K+ complex is replaced with Sr2+, guanine dipoles in the two G-tetrads are realigned toward the central metal ion, thereby distorting the planar G4 geometry. Replacing K+ with Sr2+ significantly enhances the charge-dipole interaction but substantially reduces the number of hydrogen bonds in the G-tetrads. In the case of TBA·Mn+ complexes, as the charge n increases, the charge-dipole interaction increases but both of the hydrogen-bonding and base-stacking interactions decrease. These results suggest that the charge-dipole interaction realigning guanine dipoles in the G-tetrads is not cooperative but competitive with both hydrogen-bonding and base-stacking interactions favoring the planar G-tetrad geometry. Obviously, the charge state of an intercalating metal ion is as important as the ionic radius in forming a stable G4 structure. Thus, a delicate balance between these competing noncovalent interactions makes the chair-type antiparallel G4 structure of TBA selective for intercalating metal ions.


Asunto(s)
Aptámeros de Nucleótidos/química , G-Cuádruplex , Guanina/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular , Potasio/química , Teoría Cuántica , Electricidad Estática , Estroncio/química , Termodinámica
2.
J Lipid Res ; 58(3): 625-631, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28119444

RESUMEN

Triacylglycerol (TAG) lipases hydrolyze ester bonds in TAG and release diacylglycerol (DAG), monoacylglycerol (MAG), and FA. We present a one-step chemical derivatization method for label-free quantification of a mixture of TAG, DAG, and MAG following lipase assay by ESI-MS. Because the ionization efficiencies of TAG, DAG, and MAG are not identical, lipase reaction products, DAG and MAG, are derivatized to TAG species by esterifying their hydroxyl groups using acyl chloride, whose acyl chain contains one less (or one more) -CH2 group than that of substrate TAG. This resulted in three TAG species that were separated by 14 Da from one another and exhibited similar ion responses representing their molar amounts in the mass spectra. A good linear correlation was observed between peak intensity ratios and molar ratios in calibration curve. This method enables simultaneous quantification of TAG, DAG, and MAG in lipase assay and, in turn, allows stoichiometric determination of the concentrations of FAs released from TAG and DAG separately. By applying this strategy to measure both TAG and DAG lipolytic activities of the yeast Tgl2 lipase, we demonstrated its usefulness in studying enzymatic catalysis, as lipase enzymes often show dissimilar activities toward these lipids.


Asunto(s)
Hidrólisis , Lipasa/aislamiento & purificación , Lípidos/química , Saccharomyces cerevisiae/enzimología , Catálisis , Diglicéridos/química , Diglicéridos/metabolismo , Esterificación , Lipasa/química , Monoglicéridos/química , Monoglicéridos/metabolismo , Triglicéridos/química , Triglicéridos/metabolismo
3.
J Phys Chem A ; 120(46): 9305-9314, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27802060

RESUMEN

Various types of interactions between halogen (X) and π moiety (X-π interaction) including halogen bonding play important roles in forming the structures of biological, supramolecular, and nanomaterial systems containing halogens and aromatic rings. Furthermore, halogen molecules such as X2 and CX4 (X = Cl/Br) can be intercalated in graphite and bilayer graphene for doping and graphene functionalization/modification. Due to the X-π interactions, though recently highly studied, their structures are still hardly predictable. Here, using the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)), the Møller-Plesset second-order perturbation theory (MP2), and various flavors of density functional theory (DFT) methods, we study complexes of benzene (Bz) with halogen-containing molecules X2 and CX4 (X = Cl/Br) and analyze various components of the interaction energy using symmetry adapted perturbation theory (SAPT). As for the lowest energy conformers (S1), X2-Bz is found to have the T-shaped structure where the electropositive X atom-end of X2 is pointing to the electronegative midpoint of CC bond of the Bz ring, and CX4-Bz has the stacked structure. In addition to this CX4-Bz (S1), other low energy conformers of X2-Bz (S2/S3) and CX4-Bz (S2) are stabilized primarily by the dispersion interaction, whereas the electrostatic interaction is substantial. Most of the density functionals show noticeable deviations from the CCSD(T) complete basis set (CBS) limit binding energies, especially in the case of strongly halogen-bonded conformers of X2-Bz (S1), whereas the deviations are relatively small for CX4-Bz where the dispersion is more important. The halogen bond shows highly anisotropic electron density around halogen atoms and the DFT results are very sensitive to basis set. The unsatisfactory performance of many density functionals could be mainly due to less accurate exchange. This is evidenced from the good performance by the dispersion corrected hybrid and double hybrid functionals. B2GP-PLYP-D3 and PBE0-TS(Tkatchenko-Scheffler)/D3 are well suited to describe the X-π interactions adequately, close to the CCSD(T)/CBS binding energies (within ∼1 kJ/mol). This understanding would be useful to study diverse X-π interaction driven structures such as halogen containing compounds intercalated between 2-dimensional layers.

4.
Mass Spectrom Rev ; 34(2): 209-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24872020

RESUMEN

Isobaric tags have been widely used for the identification and quantification of proteins in mass spectrometry-based proteomics. The mass-balanced, (1) H/(2) H isotope-coded dipeptide tag (MBIT) is a multifunctional isobaric tag based on N-acetyl-Ala-Ala dipeptide containing an amine-reactive linker that conjugates the tag to the primary amines of proteolytic peptides. MBITs provide a pair of isotope-coded quantitation signals separated by 3 Da, which enables 2-plex quantification and identification of proteins in the 15-250 fmol range. Various MBITs diversified at the N-acetyl group or at the side chain of the first alanine provide a pair of bs ions as low-mass quantitation signals in a distinct mass window. Thus, a combination of different MBITs allows multiplex quantification of proteins in a single liquid chromatography-mass spectrometry experiment. Unlike other isobaric tags, MBITs also offer a pair of ys ions as high-mass quantitation signals in a noise-free region, facilitating protein quantification in quadrupole ion trap mass spectrometers. Uniquely, bS ions, forming N-protonated oxazolone, undergo unimolecular dissociation and generate the secondary low-mass quantitation signals, aS ions. The yield of aS ions derived from bS ions can be used to measure the temperature of bS ions, which enables a reproducible acquisition of the peptide tandem mass spectra. Thus, MBITs enable multiplexed quantitation of proteins and the concurrent measurement of ion temperature using bS and aS signal ions as well as the isobaric protein quantitation in resonance-type ion trap using yS (complement of bS ) signal ions. This review provides an overview of MBITs with a focus on the multi-functionality that has been successfully demonstrated in the peptide tandem mass spectrometry.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Marcaje Isotópico/métodos , Péptidos/análisis , Proteínas de Saccharomyces cerevisiae/química , Aminoácidos/análisis , Benzoquinonas/farmacología , Carbazoles/farmacología , Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Lactamas Macrocíclicas/farmacología , Nocodazol/farmacología , Oxazoles/química , Péptidos/química , Piperazinas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estrés Fisiológico , Espectrometría de Masas en Tándem
5.
Mass Spectrom Rev ; 34(2): 237-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24890130

RESUMEN

Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems.


Asunto(s)
Inmunoconjugados/química , Nanopartículas del Metal/química , Péptidos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Anticuerpos/química , Antígenos CD4/química , Óxido Ferrosoférrico/química , Oro/química , Humanos , Puntos Cuánticos/química
7.
J Phys Chem A ; 117(46): 11924-32, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23914840

RESUMEN

The unimolecular dissociations of o-, m-, and p-bromotoluene radical cations to C7H7(+) (benzylium and tropylium) are examined by considering the coupling of the three isomers in the dissociation pathways. The potential energy surface obtained from ab initio calculations suggests the interconversion of isomers through methylene and hydrogen migrations on the ring. The rate equations for each isomer are combined together to form a rate matrix for coupled reactions. The rate matrix contains the microcanonical rate constants for all elementary steps, which are calculated using Rice-Ramsperger-Kassel-Marcus theory based on the molecular parameters obtained from density functional theory. The unimolecular dissociation rates for coupled reactions are determined by numerically solving the matrix equation. As a result of reaction coupling, the product branching ratio becomes time-dependent and the reaction rates of three isomers become parallel to one another as the energy increases, although their initial rates differently vary with energy. The calculated rate-energy curves fall below the time-resolved photodissociation data in the energy range 2.2-2.7 eV but are in line with the photoelectron photoion coincidence data in the energy range 2.7-3.5 eV. The discrepancy between experiment and theory in the low-energy region is ascribed to the uncertainties of the potential energy surface as well as the contribution of the radiative relaxation rate that has not been taken into account in the theoretical calculations. The rate-energy curves are then used to calculate the thermal reaction rate constants, and the Arrhenius parameters are determined in the temperature range 700-1300 K. Comparison of the activation energy and entropy obtained from the Arrhenius plot with the calculated enthalpy and entropy changes between the reactant and the highest-lying transition state suggests that a series of [1,2] H-atom migrations occurring near the entrance comprise the rate-determining steps and the subsequent [1,2] H-atom migrations play an important role in increasing the activation energy and decreasing the entropy by reducing the net flux to the exit.

8.
J Phys Chem B ; 116(48): 13982-90, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23137130

RESUMEN

Peptide fragmentations into b- and y-type ions are useful for the identification of proteins. The b ion, having the structure of a N-protonated oxazolone, dissociates to the a-type ion with loss of CO. This CO-loss process affords the possibility of characterizing the temperature of the b ion. Herein, we used N-acylated dipeptide tags, isobaric tags originally developed for protein quantification, as internal standards for the measurement of the ion temperature in peptide fragmentation. Amine-reactive dipeptide tags were attached to the N-termini of sample peptides. Collision-induced dissociation (CID) of the tagged peptides yielded a b-type quantitation signal (b(S)) from the tag, which subsequently dissociated into the a(S) ion with CO-loss. As the length of alkyl side chain on the dipeptide tag was extended from C(1) to C(8), the yield of a(S) ion gradually increased for the 4-alkyl-substituted oxazolone ion but decreased for the 2-alkyl-substituted one. To gain insights into the unimolecular dissociation kinetics, we obtained the potential energy surface from ab initio calculations. Theoretical study suggested that the 4-alkyl substitution on N-protonated oxazolone decreased the enthalpy of activation by stabilizing the productlike transition state, whereas the 2-alkyl substitution increased it by stabilizing the reactant. Resulting potential energy surfaces were used to calculate the microcanonical and canonical rate constants as well as the a(S)-ion yield. Arrhenius plots of canonical rate constants provided activation energies and pre-exponential factors for the CO-loss processes in the 600-800 K range. Comparison of experimental a(S)-ion yields with theoretical values led to precise determination of the temperature of b(S) ion. Thus, the b(S)-ion temperature of tagged peptide can be measured simply by combining kinetic parameters provided here and a(S)-ion yields obtained experimentally. Although the b-type fragment patterns varied with the chain length and position of alkyl substituent on the N-protonated oxazolone, the y-type fragment patterns were almost identical under these conditions. Furthermore, b(S)-ion temperatures were nearly the same with only a few degrees K difference. Our results demonstrate a novel use of N-acylated dipeptide tags as internal temperature standards, which enables the reproducible acquisition of peptide fragment spectra.


Asunto(s)
Dipéptidos/química , Fragmentos de Péptidos/química , Acilación , Secuencia de Aminoácidos , Iones/química , Modelos Moleculares , Datos de Secuencia Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Termodinámica
9.
J Am Chem Soc ; 134(18): 7576-9, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22540946

RESUMEN

Photochemical etching of CdSe nanoplatelets was studied to establish a relationship between the nanocrystal surface and the photochemical activity of an exciton. Nanoplatelets were synthesized in a mixture of octylamine and oleylamine for the wurtzite (W) lattice or in octadecene containing oleic acid for the zinc-blende (ZB) lattice. For photochemical etching, nanoplatelets were dispersed in chloroform containing oleylamine and tributylphosphine in the absence or presence of oleic acid and then irradiated with light at the band-edge absorption maxima. Etching phenomena were characterized using UV-vis absorption spectroscopy and transmission electron microscopy. The absorption spectra of both W and ZB CdSe nanoplatelets showed that the exciton was confined in one dimension along the thickness. However, the two nanoplatelets presented different etching kinetics and erosion patterns. The rate of etching for W CdSe nanoplatelets was much faster than that for ZB nanoplatelets. Small holes were uniformly perforated on the planar surface of W nanoplatelets, whereas the corners and edges of ZB nanoplatelets were massively eroded without a significant perforation on the planar surface. This suggests that the amine-passivated surface of trivalent cadmium atoms on CdSe nanoplatelets is photochemically active, but the carboxylate-passivated surface of divalent cadmium atoms is not. Hence, the ligand, which induces the growth of W or ZB CdSe nanoplatelets, mediates the surface-dependent photochemical etching. This result implies that an electron-hole pair can be extracted from the planar surface of amine-passivated W nanoplatelets but from the corners and edges of carboxylate-passivated ZB nanoplatelets.

10.
Phys Chem Chem Phys ; 13(45): 20248-54, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21993661

RESUMEN

Noncovalent binding of fullerenes to bisporphyrins was studied in the gas phase by energy-dependent collision-induced dissociation (CID) with Xe under single-collision conditions. The electrospray ionization mass spectra of calix[4]arene-linked bisporphyrins show that bisporphyrins take up to 3-4 protons, depending on the type of meso-substituents. Of the protonated bisporphyrins, the diprotonated species form stable 1:1 complexes with fullerenes (C(60) and C(70)). CID cracking patterns of the diprotonated bisporphyrins indicate that each monomeric porphyrin moiety is singly protonated. CID yield-energy curves obtained from the 1:1 diprotonated bisporphyrin-fullerene complexes suggest that a fullerene occupies the endo-binding site intercalated between the two singly protonated porphyrin moieties. In the cases of 1:2 diprotonated bisporphyrin-fullerene complexes, CID results show that one fullerene binds inside (endo-binding) and the other outside (exo-binding). The exo-binding mode is energetically almost identical to the binding of fullerenes to singly protonated porphyrin monomers. The endo-binding energy is at least twice the exo-binding energy. To gain insights into the binding mode, we optimized structures of diprotonated bisporphyrins and their 1:1 endo-complexes with fullerenes, and calculated the endo-binding energy for C(60), C(70) (end-on), and C(70) (side-on). The endo-binding of fullerenes to diprotonated bisporphyrins nearly doubles the π-π interactions while reducing the electrostatic repulsion between the two singly protonated porphyrin moieties. The side-on binding of C(70) is favored over the end-on binding because the former exerts less steric strain to the lower rim of calixarene.


Asunto(s)
Fulerenos/química , Porfirinas/química , Sitios de Unión , Calixarenos/química , Modelos Moleculares , Fenoles/química , Protones , Espectrometría de Masa por Ionización de Electrospray
11.
J Am Soc Mass Spectrom ; 22(9): 1668-77, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21953270

RESUMEN

Isotope-labeled N-acetyl dipeptides (Ac-Xxx-Ala) are coupled to the primary amines of tryptic peptides and then analyzed by tandem mass spectrometry. Amide bond cleavage between Xxx and Ala provides both low- and high-mass isotope-coded signals for quantification of peptides. Especially, facile cleavage at the modified lysine side chain yields very strong high-mass quantitation signals in a noise-free region. Tagging tryptic peptides with isobaric N-acetyl dipeptides is a viable strategy for accurate quantification of proteins, which can be used with most quadrupole ion trap mass spectrometers carrying the 1/3 mass cut-off problem.


Asunto(s)
Dipéptidos/química , Fragmentos de Péptidos/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Deuterio/análisis , Deuterio/química , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Tripsina/metabolismo
12.
Analyst ; 136(8): 1614-9, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21369596

RESUMEN

Mass-balanced (1)H/(2)H-isotope dipeptide tag (MBIT) is diversified as aliphatic tags for multiplexed protein quantification. Aliphatic MBITs are based on the N-acetyl-Xxx-Ala dipeptide, where Xxx is an artificial amino acid with a linear alkyl side chain from C(2)H(5) to C(8)H(17) (C(2)-C(8) tags). (1)H/(2)H isotopes are encoded in the methyl groups of N-acetyl and Ala to yield a pair of isobaric tags with 2-plex quantitation signals separated by 3 Da. C(2)-C(5) tags are prepared by solid-phase synthesis, while C(6)-C(8) tags are synthesized by olefin metathesis in solution. These aliphatic tags are made reactive toward the primary amines of peptides, and the relative abundances of quantitation signals are characterized using both matrix-assisted laser desorption ionization and electrospray ionization tandem mass spectrometry. MBIT-linked peptides co-migrate in reverse-phase liquid chromatography (LC), and their tandem mass spectra exhibit 2-plex quantitation signals as well as sequence ions in similar abundances. As the length of alkyl side chain increases, C(2)-C(8) tags show a stepwise increase in both the LC retention time and the relative abundance of quantitation signals. In addition, the quantitation linearity is well-maintained in a 15-250 fmol range. The multiplexing capability of aliphatic MBITs is demonstrated by applying three different tags (C(6)-C(8) tags) to the quantification of yeast heat shock proteins expressed under four different physiological conditions.


Asunto(s)
Dipéptidos/química , Proteínas de Choque Térmico/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Proteínas de Choque Térmico/metabolismo
13.
J Phys Chem A ; 114(43): 11376-85, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20923211

RESUMEN

Noncovalent interactions between protonated porphyrin and fullerenes (C60 and C70) were studied with five different meso-substituted porphyrins in the gas phase. The protonated porphyrin-fullerene complexes were generated by electrospray ionization of the porphyrin-fullerene mixture in 3:1 dichloromethane/methanol containing formic acid. All singly protonated porphyrins formed the 1:1 complexes, whereas porphyrins doubly protonated on the porphine center yielded no complexes. The complex ion was mass-selected and then characterized by collision-induced dissociation with Xe. Collisional activation exclusively led to a loss of neutral fullerene, indicating noncovalent binding of fullerene to protonated porphyrin. In addition, the dissociation yield was measured as a function of collision energy, and the energy inducing 50% dissociation was determined as a measure of binding energy. Experimental results show that C70 binds to the protonated porphyrins more strongly than C60, and electron-donating substituents at the meso positions increase the fullerene binding energy, whereas electron-withdrawing substituents decrease it. To gain insight into π-π interactions between protonated porphyrin and fullerene, we calculated the proton affinity and HOMO and LUMO energies of porphyrin using Hartree-Fock and configuration interaction singles theory and obtained the binding energy of the protonated porphyrin-fullerene complex using density functional theory. Theory suggests that the protonated porphyrin-fullerene complex is stabilized by π-π interactions where the protonated porphyrin accepts π-electrons from fullerene, and porphyrins carrying bulky substituents prefer the end-on binding of C70 due to the steric hindrance, whereas those carrying less-bulky substituents favor the side-on binding of C70.


Asunto(s)
Fulerenos/química , Porfirinas/química , Sitios de Unión , Gases/química , Estructura Molecular , Protones , Espectrometría de Masa por Ionización de Electrospray
14.
Phys Chem Chem Phys ; 12(32): 9312-9, 2010 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-20607188

RESUMEN

Blinking of zinc blende CdSe-based core/shell nanocrystals is studied as a function of shell materials and surface ligands. CdSe/ZnS, CdSe/ZnSe/ZnS and CdSe/CdS/ZnS core/shell nanocrystals are prepared by colloidal synthesis and six monolayers of larger bandgap shell materials are grown over the CdSe core. Organic-soluble nanocrystals covered with stearate are made water-soluble by ligand exchange with 3-mercaptopropionic acid. The light-emitting states of nanocrystals are characterized by absorption and emission spectroscopy as well as photoluminescence lifetime measurements in solution. The blinking time trace is recorded for single nanocrystals on a glass coverslip. Both on- and off-time distributions are fitted to the power law. The power-law exponents vary, depending on shell materials and surface ligands. The off-time exponents for organic and water-soluble nanocrystals are measured in the range of 1.36-1.55 and 1.25-1.37, respectively, while their on-time exponents are spread in the range of 1.53-1.86 and 1.85-2.17, respectively. Water-soluble surface passivation with thiolate prolongs the dark period regardless of shell materials and core/shell structures. Of the core/shell structures, CdSe/CdS/ZnS exhibits the longest bright state. The on/off-time exponents are inversely correlated, although the successive on/off events are not individually correlated. A two competing charge-tunneling model is presented to describe the variation of on- and off-time exponents with shell materials and surface ligands.


Asunto(s)
Compuestos de Cadmio/química , Ligandos , Nanopartículas/química , Compuestos de Selenio/química , Sulfuros/química , Termodinámica , Compuestos de Zinc/química
15.
Bioconjug Chem ; 21(7): 1305-11, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20583788

RESUMEN

Semiconductor nanocrystals emerge as fluorescent bioprobes for long-term imaging and multiplexed assays; however, there is a challenge of making nanocrystals biocompatible without nonspecific bindings to background molecules. Here, we report the bioconjugation of small-sized, hydroxylated nanocrystals, enabling highly sensitive detection of various biomolecules with little or no nonspecific binding. Zinc-blende CdSe/ZnS nanocrystals were passivated with 3-mercapto-1-propanol (MPO) and activated to amine-reactive succinimidyl carbonate derivatives and then covalently linked to amine-functionalized biomolecules, such as biotin, DNA, and hemagglutinin peptide, by forming a carbamate linkage. Tris(3-hydroxypropyl)phosphine was added to stabilize the zinc-thiolate linkage on nanocrystals. For comparison, CdSe/ZnS nanocrystals were passivated with 3-mercaptopropionic acid (MPA) and conjugated with aminated biomolecules. Photoluminescence properties of organic, water-soluble, and bioconjugated nanocrystals were characterized. Significantly, the bioconjugates of hydroxylated (CdSe/ZnS-MPO) nanocrystals exhibited brighter photoluminescence with longer lifetimes than those of carboxylated (CdSe/ZnS-MPA) nanocrystals. Specific and nonspecific interactions between nanocrystals and biomolecules were examined by incubating nanocrystal-bioconjugates with avidin-agarose beads, anti-hemagglutinin affinity matrix, DNA glass slide, or avidin glass slide. CdSe/ZnS-MPO nanocrystals showed little or no nonspecific binding to both agarose beads and glass slides, whereas CdSe/ZnS-MPA nanocrystals exhibited significant nonspecific binding due to the carboxyl-amine interactions. Notably, CdSe/ZnS-MPO bioconjugates yield about 20 times brighter images than CdSe/ZnS-MPA bioconjugates in both DNA hybridization and biotin-streptavidin binding. Hydroxylated nanocrystals stabilized by hydroxyphosphine are small, bright, and photostable in physiological conditions, and their bioconjugates afford background-free detection of specific biomolecular interactions, positioning them for an ideal fluorescent probe to biological settings.


Asunto(s)
Biotina/química , ADN/química , Colorantes Fluorescentes/química , Nanoestructuras/química , Péptidos/química , Compuestos de Cadmio/química , Carbonatos/química , Hidroxilación , Estructura Molecular , Propanoles/química , Compuestos de Selenio/química , Semiconductores , Solubilidad , Succinimidas/química , Compuestos de Sulfhidrilo/química , Sulfuros/química , Zinc/química , Compuestos de Zinc/química
16.
J Am Soc Mass Spectrom ; 21(7): 1245-55, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20434362

RESUMEN

The binding sites and consecutive binding constants of alkali metal ions, (M(+) = Na(+), K(+), Rb(+), and Cs(+)), to thrombin-binding aptamer (TBA) DNA were studied by Fourier-transform ion cyclotron resonance spectrometry. TBA-metal complexes were produced by electrospray ionization (ESI) and the ions of interest were mass-selected for further characterization. The structural motif of TBA in an ESI solution was checked by circular dichroism. The metal-binding constants and sites were determined by the titration method and infrared multiphoton dissociation (IRMPD), respectively. The binding constant of potassium is 5-8 times greater than those of other alkali metal ions, and the potassium binding site is different from other metal binding sites. In the 1:1 TBA-metal complex, potassium is coordinated between the bottom G-quartet and two adjacent TT loops of TBA. In the 1:2 TBA-metal complex, the second potassium ion binds at the TGT loop of TBA, which is in line with the antiparallel G-quadruplex structure of TBA. On the other hand, other alkali metal ions bind at the lateral TGT loop in both 1:1 and 1:2 complexes, presumably due to the formation of ion-pair adducts. IRMPD studies of the binding sites in combination with measurements of the consecutive binding constants help elucidate the binding modes of alkali metal ions on DNA aptamer at the molecular level.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Metales Alcalinos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Aptámeros de Nucleótidos/química , Sitios de Unión , Dicroismo Circular , Análisis de Fourier , Iones/química , Iones/metabolismo , Metales Alcalinos/química , Conformación Molecular , Potasio/química , Potasio/metabolismo , Unión Proteica , Sodio/química , Sodio/metabolismo
17.
Phys Chem Chem Phys ; 12(20): 5446-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20372731

RESUMEN

Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H(2) storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H(2) release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H(2) elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Lambda-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H(2) along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H(2) at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H(2) with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.

18.
J Biol Chem ; 285(5): 3005-13, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19959834

RESUMEN

The Saccharomyces cerevisiae Tgl2 protein shows sequence homology to Pseudomonas triacylglycerol (TAG) lipases, but its role in the yeast lipid metabolism is not known. Using hemagglutinin-tagged Tgl2p purified from yeast, we report that this protein carries a significant lipolytic activity toward long-chain TAG. Importantly, mutant hemagglutinin-Tgl2p(S144A), which contains alanine 144 in place of serine 144 in the lipase consensus sequence (G/A)XSXG exhibits no such activity. Although cellular TAG hydrolysis is reduced in the tgl2 deletion mutant, overproduction of Tgl2p in this mutant leads to an increase in TAG degradation in the presence of fatty acid synthesis inhibitor cerulenin, but that of Tgl2p(S144A) does not. This result demonstrates the lipolytic function of Tgl2p in yeast. Although other yeast TAG lipases are localized to lipid particles, Tgl2p is enriched in the mitochondria. The mitochondrial fraction purified from the TGL2-overexpressing yeast shows a strong lipolytic activity, which was absent in the tgl2 deletion mutant. Therefore, we conclude that Tgl2p is a functional lipase of the yeast mitochondria. By analyzing phenotypic effects of TGL2-deficient yeast, we also find that lipolysis-competent Tgl2p is required for the viability of cells treated with antimitotic drug. The addition of oleic acid, the product of Tgl2p-catalyzed lipolysis, fully complements the antimitotic drug sensitivity of the tgl2 null mutation. Thus, we propose that the mitochondrial Tgl2p-dependent lipolysis is crucial for the survival of cells under antimitotic drug treatment.


Asunto(s)
Lipasa/genética , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Saccharomyces cerevisiae/metabolismo , Alanina/química , Cerulenina/química , Ácidos Grasos/metabolismo , Proteínas Fúngicas/química , Hidrólisis , Lipasa/metabolismo , Lípidos/química , Mitosis , Mutación , Ácido Oléico/química , Fenotipo , Serina/química , Especificidad por Sustrato
19.
J Phys Chem A ; 113(35): 9588-94, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19658381

RESUMEN

The metal (M = Cd2+ and Zn2+) complexes with trioctylphosphine chalcogenide (TOPE, E = O, S, and Se) are prepared by electrospray ionization, and their relative stabilities and intramolecular reactions are studied by collision-induced dissociation (CID) with Xe under single collision conditions. These metal-TOPE complexes are considered as molecular precursors for the colloidal synthesis of II-VI compound semiconductor nanocrystals employing TOPO as a metal-coordinating solvent and TOPS or TOPSe as a chalcogen precursor. Of the various [M + nTOPE]2+ (n = 2-7) ions generated by ESI, the n = 2-4 complexes are characterized by CID as a function of collision energy. The collision energy at 50% dissociation (E50%) is determined from the cracking curve and the relative stabilities of the complexes are established. Between the two metal ions, the zinc-TOPE complexes are more stable than the cadmium-TOPE complexes when n = 2-3, whereas their stabilities are reversed when n = 4. Of the TOPE, TOPO binds most strongly to the metal ion, while TOPSe does most weakly. Upon CID, loss of TOPE occurs exclusively from the tetra-TOPE complexes, while extensive fragmentation of TOPE takes place from the di-TOPE complexes, showing the signature of the metal chacogenide formation. The nucleation of nanocrystals appears to begin with cracking of [M + 2TOPE]2+ (E = S and Se).


Asunto(s)
Nanopartículas del Metal/química , Compuestos Organometálicos/química , Selenio/química , Semiconductores , Azufre/química , Cadmio/química , Compuestos Organometálicos/síntesis química , Compuestos Organofosforados/química , Espectrometría de Masa por Ionización de Electrospray , Vibración , Xenón/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...