Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(5): 1970-1980, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37134284

RESUMEN

In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient Escherichia coli (E. coli) decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS2 and WS2 QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation. As the number of the CH3 groups of alcohol solvents among ethyl, isopropyl, and tert(t)-butyl alcohols increases, the dispersibility of MoS2/WS2 increases. The CH3 groups of alcohols minimize the surface energy, leading to the effective exfoliation and disintegration of the bulk under heat and pressure. The bulky t-butyl alcohol with the highest number of methyl groups shows the highest exfoliation and yield. MoS2 QDs with a lateral size of about 2.5 nm and WS2 QDs of about 10 nm are prepared, exhibiting a strong blue luminescence under 365 nm ultraviolet (UV) light irradiation. Their heights are 0.68-3 and 0.72-5 nm, corresponding to a few layers of MoS2 and WS2, respectively. They offer a highly efficient performance in sterilizing E. coli as the visible-light-driven photocatalyst.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Molibdeno/química , Solventes , Escherichia coli , Etanol , Antibacterianos/farmacología , Azufre
2.
Polymers (Basel) ; 13(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924110

RESUMEN

Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.

3.
Sci Rep ; 7(1): 14463, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089509

RESUMEN

Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.

4.
Sci Rep ; 6: 39448, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991584

RESUMEN

A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.


Asunto(s)
Grafito/química , Puntos Cuánticos/química , Enlace de Hidrógeno , Luminiscencia , Pirazinas/química
5.
ACS Nano ; 10(7): 6799-807, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27309489

RESUMEN

Although there are numerous reports of high performance supercapacitors with porous graphene, there are few reports to control the interlayer gap between graphene sheets with conductive molecular linkers (or molecular pillars) through a π-conjugated chemical carbon-carbon bond that can maintain high conductivity, which can explain the enhanced capacitive effect of supercapacitor mechanism about accessibility of electrolyte ions. For this, we designed molecularly gap-controlled reduced graphene oxides (rGOs) via diazotization of three different phenyl, biphenyl, and para-terphenyl bis-diazonium salts (BD1-3). The graphene interlayer sub-nanopores of rGO-BD1-3 are 0.49, 0.7, and 0.96 nm, respectively. Surprisingly, the rGO-BD2 0.7 nm gap shows the highest capacitance in 1 M TEABF4 having 0.68 nm size of cation and 6 M KOH having 0.6 nm size of hydrated cation. The maximum energy density and power density of the rGO-BD2 were 129.67 W h kg(-1) and 30.3 kW kg(-1), respectively, demonstrating clearly that the optimized sub-nanopore of the rGO-BDs corresponding to the electrolyte ion size resulted in the best capacitive performance.

6.
Nanoscale ; 7(13): 5633-7, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25757839

RESUMEN

To prepare carbon-based fluorescent materials such as graphene quantum dots (GQDs), new and effective methods are needed to convert one-dimensional (1D) or two-dimensional (2D) carbon materials to 0D GQDs. Here, we report a novel acid-free and oxone oxidant-assisted solvothermal synthesis of GQDs using various natural carbon resources including graphite (G), multiwall carbon nanotubes (M), carbon fibers (CF), and charcoal (C). This acid-free method, not requiring the neutralization process of strong acids, exhibits a simple and eco-friendly purification process and also represents a recycling production process, together with mass production and high yield. Newly synthesized GQDs exhibited a strong blue photoluminescence (PL) under 365 nm UV light illumination. The PL emission peaks of all the recycled GQDs did not change.

7.
Small ; 10(5): 866-70, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24745051

RESUMEN

One of the most efficient and straightforward methods for production of graphene quantum dots (GQDs) could be their direct preparation from graphite powder by one-pot synthesis using high-powered microwave irradiation. It is believed that in this way, graphite can be multiply broken by repeated redox reactions, which leads to a high yield and mass production.

8.
ACS Nano ; 8(5): 4580-90, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24680354

RESUMEN

Supercapacitors with porous carbon structures have high energy storage capacity. However, the porous nature of the carbon electrode, composed mainly of carbon nanotubes (CNTs) and graphene oxide (GO) derivatives, negatively impacts the volumetric electrochemical characteristics of the supercapacitors because of poor packing density (<0.5 g cm(-3)). Herein, we report a simple method to fabricate highly dense and vertically aligned reduced graphene oxide (VArGO) electrodes involving simple hand-rolling and cutting processes. Because of their vertically aligned and opened-edge graphene structure, VArGO electrodes displayed high packing density and highly efficient volumetric and areal electrochemical characteristics, very fast electrolyte ion diffusion with rectangular CV curves even at a high scan rate (20 V/s), and the highest volumetric capacitance among known rGO electrodes. Surprisingly, even when the film thickness of the VArGO electrode was increased, its volumetric and areal capacitances were maintained.

9.
J Nanosci Nanotechnol ; 9(12): 7141-4, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19908745

RESUMEN

Colloidal titanium dioxide (TiO2) suspensions were synthesized by hydrolysis of titanium isopropoxide in the presence of acetic acid. When TiO2 colloids were subjected to bandgap excitation (ultraviolet [UV] irradiation), the colloidal solution exhibited yellow coloration, leading to the trapping of holes and electrons on the particle surfaces. The absorption spectra indicated a distinct absorption band in the UV and visible region. Dried-drop film of the UV-irradiated TiO2 suspension on the mica surface was characterized by scanning electron microscopy (SEM). SEM images showed that "crystal-like" network structures of TiO2 nanoparticles had formed dramatically on the solid surface. The resulting networks ranged in size from 100 nm to 500 nm and had crystal-growth patterns, while also having almost similar rectangular shapes. It seems that the individual particles, with electron or hole scavengers such as oxygen in ambient conditions, make contact with a number of neighbors, thereby forming self-assembled three-dimensional nanoparticle-based pseudo-crystalline structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...