Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 967, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109650

RESUMEN

Singapore's National Flower, Papilionanthe (Ple.) Miss Joaquim 'Agnes' (PMJ) is highly prized as a horticultural flower from the Orchidaceae family. A combination of short-read sequencing, single-molecule long-read sequencing and chromatin contact mapping was used to assemble the PMJ genome, spanning 2.5 Gb and 19 pseudo-chromosomal scaffolds. Genomic resources and chemical profiling provided insights towards identifying, understanding and elucidating various classes of secondary metabolite compounds synthesized by the flower. For example, presence of the anthocyanin pigments detected by chemical profiling coincides with the expression of ANTHOCYANIN SYNTHASE (ANS), an enzyme responsible for the synthesis of the former. Similarly, the presence of vandaterosides (a unique class of glycosylated organic acids with the potential to slow skin aging) discovered using chemical profiling revealed the involvement of glycosyltransferase family enzymes candidates in vandateroside biosynthesis. Interestingly, despite the unnoticeable scent of the flower, genes involved in the biosynthesis of volatile compounds and chemical profiling revealed the combination of oxygenated hydrocarbons, including traces of linalool, beta-ionone and vanillin, forming the scent profile of PMJ. In summary, by combining genomics and biochemistry, the findings expands the known biodiversity repertoire of the Orchidaceae family and insights into the genome and secondary metabolite processes of PMJ.


Asunto(s)
Antocianinas , Orchidaceae , Cromatina/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Redes y Vías Metabólicas , Orchidaceae/genética , Singapur
3.
Evol Appl ; 14(8): 2124-2133, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429753

RESUMEN

Impending anthropogenic climate change will severely impact coastal organisms at unprecedented speed. Knowledge on organisms' evolutionary responses to past sea-level fluctuations and estimation of their evolutionary potential is therefore indispensable in efforts to mitigate the effects of future climate change. We sampled tens of thousands of genomic markers of ~300 individuals in two of the four extant horseshoe crab species across the complex archipelagic Singapore Straits. Carcinoscorpius rotundicauda Latreille, a less mobile mangrove species, has finer population structure and lower genetic diversity compared with the dispersive deep-sea Tachypleus gigas Müller. Even though the source populations of both species during the last glacial maximum exhibited comparable effective population sizes, the less dispersive C. rotundicauda seems to lose genetic diversity much more quickly because of population fragmentation. Contra previous studies' results, we predict that the more commonly sighted C. rotundicauda faces a more uncertain conservation plight, with a continuing loss in evolutionary potential and higher vulnerability to future climate change. Our study provides important genomic baseline data for the redirection of conservation measures in the face of climate change and can be used as a blueprint for assessment and mitigation of the adverse effects of impending sea-level rise in other systems.

5.
Nat Commun ; 12(1): 4489, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301952

RESUMEN

Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.


Asunto(s)
Cromosomas/genética , Evolución Molecular , Genoma/genética , Modelos Genéticos , Vertebrados/genética , Animales , Variación Genética , Humanos , Lampreas/genética , Filogenia , Poliploidía , Análisis de Secuencia de ADN , Tiburones/genética , Sintenía , Vertebrados/clasificación
6.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523858

RESUMEN

The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Vertebrados , Inmunidad Adaptativa , Animales , Peces , Mamíferos , Receptores de Antígenos de Linfocitos T/genética
7.
MethodsX ; 7: 101053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33024710

RESUMEN

This protocol describes a stepwise process to identify proteins of interest from a query proteome derived from NGS data. We implemented this protocol on Moringa oleifera transcriptome to identify proteins involved in secondary metabolite and vitamin biosynthesis and ion transport. This knowledge-driven protocol identifies proteins using an integrated approach involving sensitive sequence search and evolutionary relationships. We make use of functionally important residues (FIR) specific for the query protein family identified through its homologous sequences and literature. We screen protein hits based on the clustering with true homologues through phylogenetic tree reconstruction complemented with the FIR mapping. The protocol was validated for the protein hits through qRT-PCR and transcriptome quantification. Our protocol demonstrated a higher specificity as compared to other methods, particularly in distinguishing cross-family hits. This protocol was effective in transcriptome data analysis of M. oleifera as described in Pasha et al.•Knowledge-driven protocol to identify secondary metabolite synthesizing protein in a highly specific manner.•Use of functionally important residues for screening of true hits.•Beneficial for metabolite pathway reconstruction in any (species, metagenomics) NGS data.

8.
Mol Ecol Resour ; 20(6): 1748-1760, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32725950

RESUMEN

Horseshoe crabs, represented by only four extant species, have existed for around 500 million years. However, their existence is now under threat because of anthropogenic activities. The availability of genomic resources for these species will be valuable in planning appropriate conservation measures. Whole-genome sequences are currently available for three species. In this study, we have generated a chromosome-level genome assembly of the fourth species, the Asian coastal horseshoe crab (Tachypleus gigas; genome size 2.0 Gb). The genome assembly has a scaffold N50 value of 140 Mb with ~97% of the assembly mapped to 14 scaffolds representing 14 chromosomes of T. gigas. In addition, we have generated the complete mitochondrial genome sequence and deep-coverage transcriptome assemblies for four tissues. A total of 26,159 protein-coding genes were predicted in the genome. The T. gigas genome contains five Hox clusters similar to the mangrove horseshoe crab (Carcinoscorpius rotundicauda), suggesting that the common ancestor of horseshoe crabs already possessed five Hox clusters. Phylogenomic and divergence time analysis suggested that the American and Asian horseshoe crab lineages shared a common ancestor around the Silurian period (~436 Ma). Comparison of the T. gigas genome with those of other horseshoe crab species with chromosome-level assemblies provided insights into the chromosomal rearrangement events that occurred during the emergence of these species. The genomic resources of T. gigas will be useful for understanding their genetic diversity and population structure and would help in designing strategies for managing and conserving their stocks across Asia.


Asunto(s)
Genoma Mitocondrial , Cangrejos Herradura , Animales , Asia , Cromosomas , Genómica , Cangrejos Herradura/genética , Filogenia
9.
Nat Commun ; 11(1): 2322, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385269

RESUMEN

The evolutionary history of horseshoe crabs, spanning approximately 500 million years, is characterized by remarkable morphological stasis and a low species diversity with only four extant species. Here we report a chromosome-level genome assembly for the mangrove horseshoe crab (Carcinoscorpius rotundicauda) using PacBio reads and Hi-C data. The assembly spans 1.67 Gb with contig N50 of 7.8 Mb and 98% of the genome assigned to 16 chromosomes. The genome contains five Hox clusters with 34 Hox genes, the highest number reported in any invertebrate. Detailed analysis of the genome provides evidence that suggests three rounds of whole-genome duplication (WGD), raising questions about the relationship between WGD and species radiation. Several gene families, particularly those involved in innate immunity, have undergone extensive tandem duplication. These expanded gene families may be important components of the innate immune system of horseshoe crabs, whose amebocyte lysate is a sensitive agent for detecting endotoxin contamination.


Asunto(s)
Genoma/genética , Cangrejos Herradura/genética , Animales , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Familia de Multigenes/genética , Filogenia
10.
Data Brief ; 30: 105416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32309524

RESUMEN

In this paper, we present the data acquired during transcriptome analysis of the plant Moringa oleifera [1] from five different tissues (root, stem, leaf, flower and seed) by RNA sequencing. A total of 271 million reads were assembled with an N50 of 2094 bp. The combined transcriptome was assessed for transcript abundance across five tissues. The protein coding genes identified from the transcripts were annotated and used for orthology analysis. Further, enzymes involved in the biosynthesis of select medicinally important secondary metabolites, vitamins and ion transporters were identified and their expression levels across tissues were examined. The data generated by RNA sequencing has been deposited to NCBI public repository under the accession number PRJNA394193 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA394193).

11.
Genomics ; 112(1): 621-628, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048014

RESUMEN

Moringa oleifera is a plant well-known for its nutrition value, drought resistance and medicinal properties. cDNA libraries from five different tissues (leaf, root, stem, seed and flower) of M. oleifera cultivar Bhagya were generated and sequenced. We developed a bioinformatics pipeline to assemble transcriptome, along with the previously published M. oleifera genome, to predict 17,148 gene models. Few candidate genes related to biosynthesis of secondary metabolites, vitamins and ion transporters were identified. Expressions were further confirmed by real-time quantitative PCR experiments for few promising leads. Quantitative estimation of metabolites, as well as elemental analysis, was also carried out to support our observations. Enzymes in the biosynthesis of vitamins and metabolites like quercetin and kaempferol are highly expressed in leaves, flowers and seeds. The expression of iron transporters and calcium storage proteins were observed in root and leaves. In general, leaves retain the highest amount of small molecules of interest.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Moringa oleifera , Metabolismo Secundario/fisiología , Transcriptoma/fisiología , Biblioteca de Genes , Moringa oleifera/genética , Moringa oleifera/metabolismo
12.
Sci Rep ; 9(1): 19559, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863055

RESUMEN

The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6ß locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.


Asunto(s)
Encéfalo/metabolismo , Ojo/metabolismo , Lampreas/metabolismo , Factor de Transcripción PAX6/metabolismo , Páncreas/inervación , Factores de Transcripción/metabolismo , Vertebrados/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Evolución Molecular , Factor de Transcripción PAX6/química , Factores de Transcripción/química , Pez Cebra
13.
Proc Natl Acad Sci U S A ; 115(14): E3211-E3220, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555777

RESUMEN

Cytidine deaminases of the AID/APOBEC family catalyze C-to-U nucleotide transitions in mRNA or DNA. Members of the APOBEC3 branch are involved in antiviral defense, whereas AID contributes to diversification of antibody repertoires in jawed vertebrates via somatic hypermutation, gene conversion, and class switch recombination. In the extant jawless vertebrate, the lamprey, two members of the AID/APOBEC family are implicated in the generation of somatic diversity of the variable lymphocyte receptors (VLRs). Expression studies linked CDA1 and CDA2 genes to the assembly of VLRA/C genes in T-like cells and the VLRB genes in B-like cells, respectively. Here, we identify and characterize several CDA1-like genes in the larvae of different lamprey species and demonstrate that these encode active cytidine deaminases. Structural comparisons of the CDA1 variants highlighted substantial differences in surface charge; this observation is supported by our finding that the enzymes require different conditions and substrates for optimal activity in vitro. Strikingly, we also found that the number of CDA-like genes present in individuals of the same species is variable. Nevertheless, irrespective of the number of different CDA1-like genes present, all lamprey larvae have at least one functional CDA1-related gene encoding an enzyme with predicted structural and chemical features generally comparable to jawed vertebrate AID. Our findings suggest that, similar to APOBEC3 branch expansion in jawed vertebrates, the AID/APOBEC family has undergone substantial diversification in lamprey, possibly indicative of multiple distinct biological roles.


Asunto(s)
Desaminasas APOBEC-1/genética , Citidina Desaminasa/clasificación , Citidina Desaminasa/genética , Variaciones en el Número de Copia de ADN , Lampreas/genética , Linfocitos/inmunología , Receptores de Antígenos/genética , Desaminasas APOBEC-1/química , Desaminasas APOBEC-1/inmunología , Secuencia de Aminoácidos , Animales , Citidina Desaminasa/química , Citidina Desaminasa/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Conformación Proteica , Receptores de Antígenos/clasificación , Homología de Secuencia , Secuenciación Completa del Genoma
14.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28931746

RESUMEN

Studies of the voltage-gated sodium (Nav) channels of extant gnathostomes have made it possible to deduce that ancestral gnathostomes possessed four voltage-gated sodium channel genes derived from a single ancestral chordate gene following two rounds of genome duplication early in vertebrates. We investigated the Nav gene family in two species of lampreys (the Japanese lamprey Lethenteron japonicum and sea lamprey Petromyzon marinus) (jawless vertebrates-agnatha) and compared them with those of basal vertebrates to better understand the origin of Nav genes in vertebrates. We noted six Nav genes in both lamprey species, but orthology with gnathostome (jawed vertebrate) channels was inconclusive. Surprisingly, the Nav2 gene, ubiquitously found in invertebrates and believed to have been lost in vertebrates, is present in lampreys, elephant shark (Callorhinchus milii) and coelacanth (Latimeria chalumnae). Despite repeated duplication of the Nav1 family in vertebrates, Nav2 is only in single copy in those vertebrates in which it is retained, and was independently lost in ray-finned fishes and tetrapods. Of the other five Nav channel genes, most were expressed in brain, one in brain and heart, and one exclusively in skeletal muscle. Invertebrates do not express Nav channel genes in muscle. Thus, early in the vertebrate lineage Nav channels began to diversify and different genes began to express in heart and muscle.


Asunto(s)
Evolución Molecular , Proteínas de Peces/genética , Duplicación de Gen , Lampreas/genética , Canales de Sodio Activados por Voltaje/genética , Animales , Filogenia
15.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26315624

RESUMEN

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Ocimum/genética , India , Ocimum/metabolismo , Hojas de la Planta/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
16.
PLoS One ; 10(6): e0127716, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043007

RESUMEN

Domain swapping mechanism is a specialised mode of oligomerization of proteins in which part of a protein is exchanged in a non-covalent manner between constituent subunits. This mechanism is highly affected by several physiological conditions. Here, we present a detailed analysis ofthe effect of pH on different regions of the domain swapped oligomer by considering examples which are known to be sensitive to pH in transiting from monomeric to domain-swapped dimeric form. The energetic calculations were performed using a specialized method which considers changes in pH and subsequent changes in the interactions between subunits. This analysis provides definitive hints about the pH-dependence switch from monomer to domain-swapped oligomer and the steps that may be involved in the swapping mechanism.


Asunto(s)
Modelos Químicos , Multimerización de Proteína , Proteínas/química , Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética
17.
BMC Bioinformatics ; 15: 303, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25228146

RESUMEN

BACKGROUND: Various methods have been developed to computationally predict hotspot residues at novel protein-protein interfaces. However, there are various challenges in obtaining accurate prediction. We have developed a novel method which uses different aspects of protein structure and sequence space at residue level to highlight interface residues crucial for the protein-protein complex formation. RESULTS: ECMIS (Energetic Conservation Mass Index and Spatial Clustering) algorithm was able to outperform existing hotspot identification methods. It was able to achieve around 80% accuracy with incredible increase in sensitivity and outperforms other existing methods. This method is even sensitive towards the hotspot residues contributing only small-scale hydrophobic interactions. CONCLUSION: Combination of diverse features of the protein viz. energy contribution, extent of conservation, location and surrounding environment, along with optimized weightage for each feature, was the key for the success of the algorithm. The academic version of the algorithm is available at http://caps.ncbs.res.in/download/ECMIS/ECMIS.zip.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Análisis por Conglomerados , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Programas Informáticos , Termodinámica
18.
Database (Oxford) ; 2014: bau026, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24700812

RESUMEN

Protein domain families are usually classified on the basis of similarity of amino acid sequences. Selection of a single representative sequence for each family provides targets for structure determination or modeling and also enables fast sequence searches to associate new members to a family. Such a selection could be challenging since some of these domain families exhibit huge variation depending on the number of members in the family, the average family sequence length or the extent of sequence divergence within a family. We had earlier created 3PFDB database as a repository of best representative sequences, selected from each PFAM domain family on the basis of high coverage. In this study, we have improved the database using more efficient strategies for the initial generation of sequence profiles and implement two independent methods, FASSM and HMMER, for identifying family members. HMMER employs a global sequence similarity search, while FASSM relies on motif identification and matching. This improved and updated database, 3PFDB+ generated in this study, provides representative sequences and profiles for PFAM families, with 13 519 family representatives having more than 90% family coverage. The representative sequence is also highlighted in a two-dimensional plot, which reflects the relative divergence between family members. Representatives belonging to small families with short sequences are mainly associated with low coverage. The set of sequences not recognized by the family representative profiles, highlight several potential false or weak family associations in PFAM. Partial domains and fragments dominate such cases, along with sequences that are highly diverged or different from other family members. Some of these outliers were also predicted to have different secondary structure contents, which reflect different putative structure or functional roles for these domain sequences. Database URL: http://caps.ncbs.res.in/3pfdbplus/.


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Motor de Búsqueda/métodos , Programas Informáticos , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Familia de Multigenes
19.
PLoS One ; 7(7): e39305, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848353

RESUMEN

BACKGROUND: 3D domain swapping is an oligomerization process in which structural elements get exchanged between subunits. This mechanism grasped interest of many researchers due to its association with neurodegenerative diseases like Alzheimer's disease, spongiform encephalopathy etc. Despite the biomedical relevance, very little is known about understanding this mechanism. The quest for ruling principles behind this curious phenomenon that could enable early prediction provided an impetus for our bioinformatics studies. METHODOLOGY: A novel method, HIDE, has been developed to find non-domain-swapped homologues and to identify hinge from domain-swapped oligomers. Non-domain-swapped homologues were identified from the protein structural databank for majority of the domain-swapped entries and hinge boundaries could be recognised automatically by means of successive superposition techniques. Different sequence and structural features in domain-swapped proteins and related proteins have also been analysed. CONCLUSIONS: The HIDE algorithm was able to identify hinge region in 83% cases. Sequence and structural analyses of hinge and interfaces reveal amino acid preferences and specific conformations of residues at hinge regions, while comparing the domain-swapped and non-domain-swapped states. Interactions differ significantly between regular dimeric interfaces and interface formed at the site of domain-swapped examples. Such preferences of residues, conformations and interactions could be of predictive value.


Asunto(s)
Bases de Datos de Proteínas , Multimerización de Proteína , Proteínas/genética , Análisis de Secuencia de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química
20.
Database (Oxford) ; 2011: bar042, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21959866

RESUMEN

Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like 'secondary major interface' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the 'extent of swapping' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping.


Asunto(s)
Biología Computacional/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas/química , Animales , Bovinos , Humanos , Modelos Moleculares , Anotación de Secuencia Molecular , Conformación Proteica , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA