Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Thromb Haemost ; 124(3): 203-222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967855

RESUMEN

BACKGROUND: Platelet C-type lectin-like receptor 2 (CLEC-2) induces platelet activation and aggregation after clustering by its ligand podoplanin (PDPN). PDPN, which is not normally expressed in cells in contact with blood flow, is induced in inflammatory immune cells and some malignant tumor cells, thereby increasing the risk of venous thromboembolism (VTE) and tumor metastasis. Therefore, small-molecule compounds that can interfere with the PDPN-CLEC-2 axis have the potential to become selective antiplatelet agents. METHODS AND RESULTS: Using molecular docking analysis of CLEC-2 and a PDPN-CLEC-2 binding-inhibition assay, we identified a group of diphenyl-tetrazol-propanamide derivatives as novel CLEC-2 inhibitors. A total of 12 hit compounds also inhibited PDPN-induced platelet aggregation in humans and mice. Unexpectedly, these compounds also fit the collagen-binding pocket of the glycoprotein VI molecule, thereby inhibiting collagen interaction. These compounds also inhibited collagen-induced platelet aggregation, and one compound ameliorated collagen-induced thrombocytopenia in mice. For clinical use, these compounds will require a degree of chemical modification to decrease albumin binding. CONCLUSION: Nonetheless, as dual activation of platelets by collagen and PDPN-positive cells is expected to occur after the rupture of atherosclerotic plaques, these dual antagonists could represent a promising pharmacophore, particularly for arterial thrombosis, in addition to VTE and metastasis.


Asunto(s)
Compuestos de Bifenilo , Tromboembolia Venosa , Humanos , Ratones , Animales , Simulación del Acoplamiento Molecular , Tromboembolia Venosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Glicoproteínas , Lectinas Tipo C/metabolismo , Colágeno/metabolismo
2.
Front Cardiovasc Med ; 8: 754254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746267

RESUMEN

Under vasculogenic conditioning, pro-inflammatory cell subsets of peripheral blood mononuclear cells (PBMCs) shift their phenotype to pro-regenerative cells such as vasculogenic endothelial progenitor cells, M2 macrophages, and regulatory T cells, collectively designated as regeneration-associated cells (RACs). In this study, we evaluated the therapeutic efficacy of RAC-derived extracellular vesicles (RACev) compared to mesenchymal stem cell-derived EVs (MSCev) in the context of myocardial ischemia reperfusion injury (M-IRI). Human PBMCs were cultured with defined growth factors for seven days to harvest RACs. RACev and MSCev were isolated via serial centrifugation and ultracentrifugation. EV quantity and size were characterized by nanoparticle tracking analysis. In vitro, RACev markedly enhanced the viability, and proliferation of human umbilical vein endothelial cells in a dose-dependent manner compared to MSCev. Notably, systemic injection of RACev improved cardiac functions at 4 weeks, such as fractional shortening, and protection from mitral regurgitation than the MSCev-treated group. Histologically, the RACev-transplanted group showed less interstitial fibrosis and enhanced capillary densities compared to the MSCev group. These beneficial effects were coupled with significant expression of angiogenesis, anti-fibrosis, anti-inflammatory, and cardiomyogenesis-related miRs in RACev, while modestly in MSCev. In vivo bioluminescence analysis showed preferential accumulation of RACev in the IR-injured myocardium, while MSCev accumulation was limited. Immune phenotyping analysis confirmed the immunomodulatory effect of MSCev and RACev. Overall, repetitive systemic transplantation of RACev is superior to MSCev in terms of cardiac function enhancements via crucial angiogenesis, anti-fibrosis, anti-inflammation miR delivery to the ischemic tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA