Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 123(3): 1120-1132, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995427

RESUMEN

Short-term plasticity is a fundamental synaptic property thought to underlie memory and neural processing. The glomerular microcircuit comprises complex excitatory and inhibitory interactions and transmits olfactory nerve signals to the excitatory output neurons, mitral/tufted cells (M/TCs). The major glomerular inhibitory interneurons, short axon cells (SACs) and periglomerular cells (PGCs), both provide feedforward and feedback inhibition to M/TCs and have reciprocal inhibitory synapses between each other. Olfactory input is episodically driven by sniffing. We hypothesized that frequency-dependent short-term plasticity within these inhibitory circuits could influence signals sent to higher-order olfactory networks. To assess short-term plasticity in glomerular circuits and MC outputs, we virally delivered channelrhodopsin-2 (ChR2) in glutamic acid decarboxylase-65 promotor (GAD2-cre) or tyrosine hydroxylase promoter (TH-cre) mice and selectively activated one of these two populations while recording from cells of the other population or from MCs. Selective activation of TH-ChR2-expressing SACs inhibited all recorded GAD2-green fluorescent protein(GFP)-expressing presumptive PGC cells, and activation of GAD2-ChR2 cells inhibited TH-GFP-expressing SACs, indicating reciprocal inhibitory connections. SAC synaptic inhibition of GAD2-expressing cells was significantly facilitated at 5-10 Hz activation frequencies. In contrast, GAD2-ChR2 cell inhibition of TH-expressing cells was activation-frequency independent. Both SAC and PGC inhibition of MCs also exhibited short-term plasticity, pronounced in the 5-20 Hz range corresponding to investigative sniffing frequency ranges. In paired SAC and olfactory nerve electrical stimulations, the SAC to MC synapse was able to markedly suppress MC spiking. These data suggest that short-term plasticity across investigative sniffing ranges may differentially regulate intra- and interglomerular inhibitory circuits to dynamically shape glomerular output signals to downstream targets.NEW & NOTEWORTHY Short-term plasticity is a fundamental synaptic property that modulates synaptic strength based on preceding activity of the synapse. In rodent olfaction, sensory input arrives episodically driven by sniffing rates ranging from quiescent respiration (1-2 Hz) through to investigative sniffing (5-10 Hz). Here we show that glomerular inhibitory networks are exquisitely sensitive to input frequencies and exhibit plasticity proportional to investigative sniffing frequencies. This indicates that olfactory glomerular circuits are dynamically modulated by episodic sniffing input.


Asunto(s)
Red Nerviosa/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147391

RESUMEN

The major inhibitory interneurons in olfactory bulb (OB) glomeruli are periglomerular cells (PGCs) and short axon cells (SACs). PGCs and SACs provide feedforward inhibition to all classes of projection neurons, but inhibition between PGCs and SACs is not well understood. We crossed Cre and GFP transgenic mice and used virally-delivered optogenetic constructs to selectively activate either SACs or GAD65cre-ChR2-positive PGCs while recording from identified GAD65cre-ChR2-positive PGCs or SACs, respectively, to investigate inhibitory interactions between these two interneuron types. We show that GAD65cre-ChR2-positive PGCs robustly inhibit SACs and SACs strongly inhibit PGCs. SACs form the interglomerular circuit, which inhibits PGCs in distant glomeruli. Activation of GAD65cre-ChR2-positive PGCs monosynaptically inhibit mitral cells (MCs), which complements recent findings that SACs directly inhibit MCs. Thus, both classes of glomerular inhibitory neurons inhibit each other, as well as OB output neurons. We further show that olfactory nerve input to one glomerulus engages the interglomerular circuit and inhibits PGCs in distant glomeruli. Sensory activation of the interglomerular circuit directly inhibits output neurons in other glomeruli and by inhibiting intraglomerular PGCs, may potentially disinhibit output neurons in other glomeruli. The nature and context of odorant stimuli may determine whether inhibition or excitation prevails so that odors are represented in part by patterns of active and inactive glomeruli.


Asunto(s)
Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural , Vías Nerviosas/fisiología , Optogenética
3.
Front Cell Neurosci ; 12: 387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416429

RESUMEN

Output projections of the olfactory bulb (OB) to the olfactory cortex (OCX) and reciprocal feedback projections from OCX provide rapid regulation of OB circuit dynamics and odor processing. Short-term synaptic plasticity (STP), a feature of many synaptic connections in the brain, can modulate the strength of feedback based on preceding network activity. We used light-gated cation channel channelrhodopsin-2 (ChR2) to investigate plasticity of excitatory synaptic currents (EPSCs) evoked at the OCX to granule cell (GC) synapse in the OB. Selective activation of OCX glutamatergic axons/terminals in OB generates strong, frequency-dependent STP in GCs. This plasticity was critically dependent on activation of CaV2.1 channels. As acetylcholine (ACh) modulates CaV2.1 channels in other brain regions and as cholinergic projections from the basal forebrain heavily target the GC layer (GCL) in OB, we investigated whether ACh modulates STP at the OCX→GC synapse. ACh decreases OCX→GC evoked EPSCs, it had no effect on STP. Thus, ACh impact on cortical feedback is independent of CaV2.1-mediated STP. Modulation of OCX feedback to the bulb by modulatory transmitters, such as ACh, or by frequency-dependent STP could regulate the precise balance of excitation and inhibition of GCs. As GCs are a major inhibitory source for OB output neurons, plasticity at the cortical feedback synapse can differentially impact OB output to higher-order networks in situations where ACh inputs are activated or by active sniff sampling of odors.

4.
J Neurosci ; 36(37): 9604-17, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629712

RESUMEN

UNLABELLED: Sensory processing shapes our perception. In mammals, odor information is encoded by combinatorial activity patterns of olfactory bulb (OB) glomeruli. Glomeruli are richly interconnected by short axon cells (SACs), which form the interglomerular circuit (IGC). It is unclear how the IGC impacts OB output to downstream neural circuits. We combined in vitro and in vivo electrophysiology with optogenetics in mice and found the following: (1) the IGC potently and monosynaptically inhibits the OB output neurons mitral/tufted cells (MTCs) by GABA release from SACs: (2) gap junction-mediated electrical coupling is strong for the SAC→MTC synapse, but negligible for the SAC→ETC synapse; (3) brief IGC-mediated inhibition is temporally prolonged by the intrinsic properties of MTCs; and (4) sniff frequency IGC activation in vivo generates persistent MTC inhibition. These findings suggest that the temporal sequence of glomerular activation by sensory input determines which stimulus features are transmitted to downstream olfactory networks and those filtered by lateral inhibition. SIGNIFICANCE STATEMENT: Odor identity is encoded by combinatorial patterns of activated glomeruli, the initial signal transformation site of the olfactory system. Lateral circuit processing among activated glomeruli modulates olfactory signal transformation before transmission to higher brain centers. Using a combination of in vitro and in vivo optogenetics, this work demonstrates that interglomerular circuitry produces potent inhibition of olfactory bulb output neurons via direct chemical and electrical synapses as well as by indirect pathways. The direct inhibitory synaptic input engages mitral cell intrinsic membrane properties to generate inhibition that outlasts the initial synaptic action.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Olfato/fisiología , Potenciales de Acción/fisiología , Animales , Channelrhodopsins , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Optogenética , Técnicas de Placa-Clamp , Olfato/efectos de los fármacos , Transmisión Sináptica/fisiología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteína Fluorescente Roja
5.
J Neurosci ; 36(29): 7779-85, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27445153

RESUMEN

UNLABELLED: The efficacy of neurotransmission depends on multiple factors, including presynaptic vesicular release of transmitter, postsynaptic receptor populations and clearance/inactivation of the transmitter. In the olfactory bulb (OB), short axon cells (SACs) form an interglomerular circuit that uses GABA and dopamine (DA) as cotransmitters. Selective optical activation of SACs causes GABA and DA co-release, resulting in a fast, postsynaptic GABA inhibitory response and a slower G-protein-coupled DA rebound excitation. In most systems, vesicular release of DA is cleared by the dopamine transporter (DAT). However, in the OB, high levels of specific DA metabolites suggest that enzymatic catalysis by catechol-O-methyl-transferase (COMT) predominates over DAT re-uptake. To assess this possibility we measured the amount of the DA breakdown enzyme, COMT, present in the OB. Compared with the striatum, the brain structure richest in DA terminals, the OB contains 50% more COMT per unit of tissue. Furthermore, the OB has dramatically less DAT compared with striatum, supporting the idea that COMT enzymatic breakdown, rather than DAT recycling, is the predominant mechanism for DA clearance. To functionally assess COMT inactivation of vesicular release of DA we used fast-scan cyclic voltammetry and pharmacological blockade of COMT. In mice expressing ChR2 in tyrosine hydroxylase-containing neurons, optical activation of SACs evoked robust DA release in the glomerular layer. The COMT inhibitor, tolcapone, increased the DA signal ∼2-fold, whereas the DAT inhibitor GBR12909 had no effect. Together, these data indicate that the OB preferentially employs COMT enzymatic inactivation of vesicular release of DA. SIGNIFICANCE STATEMENT: In the olfactory bulb (OB), odors are encoded by glomerular activation patterns. Dopaminergic short axon neurons (SACs) form an extensive network of lateral connections that mediate cross talk among glomeruli, releasing GABA and DA onto sensory nerve terminals and postsynaptic neurons. DA neurons are ∼10-fold more numerous in OB than in ventral tegmental areas that innervate the striatum. We show that OB has abundant expression of the DA catalytic enzyme catechol-O-methyl-transferase (COMT), but negligible expression of the dopamine transporter. Using optogenetics and fast-scan cyclic voltammetry, we show that inhibition of COMT increases DA signals ∼2-fold. Thus, in contrast to the striatum, which has the brain's highest proportion of DAergic synapses, the DA catalytic pathway involving COMT predominates over re-uptake in OB.


Asunto(s)
Catecol O-Metiltransferasa/metabolismo , Dopamina/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Sinapsis/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catecol O-Metiltransferasa/genética , Channelrhodopsins , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Ácido Homovanílico/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Tirosina 3-Monooxigenasa/metabolismo
6.
J Neurosci ; 36(25): 6820-35, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27335411

RESUMEN

UNLABELLED: Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT: Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.


Asunto(s)
Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Núcleos del Rafe/citología , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Olfato/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacología , Masculino , Ratones , Ratones Transgénicos , Odorantes , Optogenética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Olfato/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
7.
J Neurophysiol ; 115(3): 1208-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26655822

RESUMEN

Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.


Asunto(s)
Bulbo Olfatorio/fisiología , Serotonina/farmacología , Sinapsis/fisiología , Potenciales Sinápticos , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
J Neurosci ; 35(14): 5680-92, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855181

RESUMEN

Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings.


Asunto(s)
Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Receptores Muscarínicos/metabolismo , Sinapsis/fisiología , Acetilcolina/farmacología , Potenciales de Acción/fisiología , Animales , Channelrhodopsins , Colina O-Acetiltransferasa/genética , Colinérgicos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neurotransmisores/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
9.
J Neurophysiol ; 113(9): 3112-29, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25717156

RESUMEN

Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.


Asunto(s)
Red Nerviosa/fisiología , Neuronas Aferentes/fisiología , Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Olfato/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Simulación por Computador , Humanos , Modelos Neurológicos , Odorantes , Ratas , Vigilia
10.
J Neurosci ; 34(13): 4654-64, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672011

RESUMEN

Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment.


Asunto(s)
Sesgo , Neuronas Colinérgicas/fisiología , Odorantes , Bulbo Olfatorio/fisiología , Prosencéfalo/citología , Olfato/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Axones/efectos de los fármacos , Axones/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/farmacología , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mecamilamina/farmacología , Ratones , Ratones Transgénicos , Escopolamina/farmacología
11.
J Neurophysiol ; 110(9): 2185-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23926045

RESUMEN

Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MTCs) and external tufted cells (ETCs); ETCs provide additional feed-forward excitation to MTCs. Both are strongly regulated by intraglomerular inhibition that can last up to 1 s and, when blocked, dramatically increases ON-evoked MC spiking. Intraglomerular inhibition thus limits the magnitude and duration of MC spike responses to sensory input. In vivo, sensory input is repetitive, dictated by sniffing rates from 1 to 8 Hz, potentially summing intraglomerular inhibition. To investigate this, we recorded MTC responses to 1- to 8-Hz ON stimulation in slices. Inhibitory postsynaptic current area (charge) following each ON stimulation was unchanged from 1 to 5 Hz and modestly paired-pulse attenuated at 8 Hz, suggesting there is no summation and only limited decrement at the highest input frequencies. Next, we investigated frequency independence of intraglomerular inhibition on MC spiking. MCs respond to single ON shocks with an initial spike burst followed by reduced spiking decaying to baseline. Upon repetitive ON stimulation peak spiking is identical across input frequencies but the ratio of peak-to-minimum rate before the stimulus (max-min) diminishes from 30:1 at 1 Hz to 15:1 at 8 Hz. When intraglomerular inhibition is selectively blocked, peak spike rate is unchanged but trough spiking increases markedly decreasing max-min firing ratios from 30:1 at 1 Hz to 2:1 at 8 Hz. Together, these results suggest intraglomerular inhibition is relatively frequency independent and can "sharpen" MC responses to input across the range of frequencies. This suggests that glomerular circuits can maintain "contrast" in MC encoding during sniff-sampled inputs.


Asunto(s)
Potenciales de Acción , Potenciales Postsinápticos Inhibidores , Bulbo Olfatorio/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Nervio Olfatorio/fisiología
12.
J Neurosci ; 33(7): 2916-26, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407950

RESUMEN

Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.


Asunto(s)
Axones/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones/fisiología , Channelrhodopsins , Estimulación Eléctrica , Glutamato Descarboxilasa/metabolismo , Humanos , Inmunohistoquímica , Aparato Yuxtaglomerular/citología , Rayos Láser , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Bulbo Olfatorio/citología , Técnicas de Placa-Clamp , Estimulación Luminosa , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transmisión Sináptica/fisiología , Tirosina 3-Monooxigenasa/genética
13.
J Neurophysiol ; 108(3): 782-93, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22592311

RESUMEN

Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Bulbo Olfatorio/fisiología , Animales , Dendritas/efectos de los fármacos , Dendritas/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas de Receptores de GABA-A/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Bulbo Olfatorio/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Valina/análogos & derivados , Valina/farmacología
14.
J Neurophysiol ; 107(1): 473-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013233

RESUMEN

Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT(2A) receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5-8 Hz) to facilitate odor coding.


Asunto(s)
Potenciales de Acción/fisiología , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Olfato/fisiología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Neurosci ; 30(3): 1185-96, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089927

RESUMEN

Within glomeruli, the initial sites of synaptic integration in the olfactory pathway, olfactory sensory axons terminate on dendrites of projection and juxtaglomerular (JG) neurons. JG cells form at least two major circuits: the classic intraglomerular circuit consisting of external tufted (ET) and periglomerular (PG) cells and an interglomerular circuit comprised of the long-range connections of short axon (SA) cells. We examined the projections and the synaptic inputs of identified JG cell chemotypes using mice expressing green fluorescent protein (GFP) driven by the promoter for glutamic acid decarboxylase (GAD) 65 kDa, 67 kDa, or tyrosine hydroxylase (TH). Virtually all (97%) TH+ cells are also GAD67+ and are thus DAergic-GABAergic neurons. Using a combination of retrograde tracing, whole-cell patch-clamp recording, and single-cell three-dimensional reconstruction, we show that different JG cell chemotypes contribute to distinct microcircuits within or between glomeruli. GAD65+ GABAergic PG cells ramify principally within one glomerulus and participate in uniglomerular circuits. DAergic-GABAergic cells have extensive interglomerular projections. DAergic-GABAergic SA cells comprise two subgroups. One subpopulation contacts 5-12 glomeruli and is referred to as "oligoglomerular." Approximately one-third of these oligoglomerular DAergic SA cells receive direct olfactory nerve (ON) synaptic input, and the remaining two-thirds receive input via a disynaptic ON-->ET-->SA circuit. The second population of DAergic-GABAergic SA cells also disynaptic ON input and connect tens to hundreds of glomeruli in an extensive "polyglomerular" network. Although DAergic JG cells have traditionally been considered PG cells, their interglomerular connections argue that they are more appropriately classified as SA cells.


Asunto(s)
Axones/fisiología , Vías Olfatorias/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Aminoácidos/metabolismo , Animales , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/metabolismo , Técnicas de Placa-Clamp/métodos , Células Receptoras Sensoriales/metabolismo , Estilbamidinas/metabolismo , Tirosina 3-Monooxigenasa/genética
16.
J Neurosci ; 28(41): 10311-22, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18842890

RESUMEN

The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Bulbo Olfatorio/fisiología , Potenciales de Acción , Animales , Canales de Calcio Tipo T/fisiología , Conductividad Eléctrica , Estimulación Eléctrica , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Bulbo Olfatorio/citología , Nervio Olfatorio/fisiología , Técnicas de Placa-Clamp , Canales de Sodio/fisiología , Sinapsis/fisiología
17.
J Neurosci ; 28(7): 1625-39, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18272683

RESUMEN

External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/citología , Canales de Potasio Calcio-Activados/metabolismo , Canales de Sodio/metabolismo , Animales , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
18.
Semin Cell Dev Biol ; 17(4): 411-23, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16765614

RESUMEN

Input from olfactory receptor neurons is first organized and processed in the glomerular layer of the olfactory bulb. Olfactory glomeruli serve as functional units in coding olfactory information and contain a complex network of synaptic connections. Odor information has long been thought to be represented by spatial patterns of glomerular activation; recent work has, additionally, shown that these patterns are temporally dynamic. At the same time, recent advances in our understanding of the glomerular network suggest that glomerular processing serves to temporally sharpen these dynamics and to modulate spatial patterns of glomerular activity. We speculate that odor representations and their postsynaptic processing are tuned to and shaped by the sniffing behavior of the animal.


Asunto(s)
Neuronas Aferentes/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Modelos Biológicos , Vías Olfatorias/fisiología , Olfato/fisiología
19.
J Neurosci ; 25(36): 8197-208, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16148227

RESUMEN

In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Only ET cells affiliated with the same glomerulus exhibit significant synchronous activity, suggesting that synchrony results mainly from intraglomerular interactions. The intraglomerular mechanisms underlying their synchrony are unknown. Using dual extracellular and patch-clamp recordings from ET cell pairs of the same glomerulus, we found that the bursting of ET cells is synchronized by several mechanisms. First, ET cell pairs of the same glomerulus receive spontaneous synchronous fast excitatory synaptic input that can also be evoked by olfactory nerve stimulation. Second, they exhibit correlated spontaneous slow excitatory synaptic currents that can also be evoked by stimulation of the external plexiform layer. These slow currents may reflect the repetitive release of glutamate via spillover from the dendritic tufts of other ET or mitral/tufted cells affiliated with the same glomerulus. Third, ET cells exhibit correlated bursts of inhibitory synaptic activity immediately after the synchronous fast excitatory input. These bursts of IPSCs were eliminated by CNQX and may therefore reflect correlated feedback inhibition from periglomerular cells that are driven by ET cell spike bursts. Fourth, in the presence of fast synaptic blockers, ET cell pairs exhibit synchronous slow membrane current oscillations associated with rhythmic spikelets, which were sensitive to the gap junction blocker carbenoxolone. These findings suggest that coordinated synaptic transmission and gap junction coupling synchronize the spontaneous bursting of ET cells of the same glomerulus.


Asunto(s)
Membrana Basal Glomerular/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Cloruros/farmacología , Medios de Cultivo , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Femenino , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Bulbo Olfatorio/citología , Ratas , Ratas Sprague-Dawley
20.
J Neurophysiol ; 94(4): 2700-12, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15917320

RESUMEN

We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical-imaging techniques that selectively report activity in the ORN presynaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapid fluorescence increases that were largely blocked by the N-type calcium channel blocker omega-conotoxin GVIA. Paired shocks revealed a long-lasting suppression of calcium influx with approximately 40% suppression at 400-ms interstimulus intervals and a recovery time constant of approximately 450 ms. Blocking activation of postsynaptic olfactory bulb neurons with APV/CNQX reduced this suppression. The GABA(B) receptor agonist baclofen inhibited calcium influx, whereas GABA(B) antagonists reduced paired-pulse suppression without affecting the response to the conditioning pulse. We also imaged transmitter release directly using a mouse line that expresses synaptopHluorin selectively in ORNs. We found that the relationship between calcium influx and transmitter release was superlinear and that paired-pulse suppression of transmitter release was reduced, but not eliminated, by APV/CNQX and GABA(B) antagonists. These results demonstrate that primary olfactory input to the CNS can be presynaptically regulated by GABAergic interneurons and show that one major intracellular pathway for this regulation is via the suppression of calcium influx through N-type calcium channels in the presynaptic terminal. This mechanism is unique among primary sensory afferents.


Asunto(s)
Calcio/metabolismo , Inhibición Neural/fisiología , Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Terminales Presinápticos/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Baclofeno/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Colorantes Fluorescentes/metabolismo , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Propanolaminas/farmacología , Factores de Tiempo , omega-Conotoxina GVIA/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...