Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 125(11): 989-1002, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31545149

RESUMEN

RATIONALE: Obesity leads to resistant hypertension and mechanisms are poorly understood, but high plasma levels of leptin have been implicated. Leptin increases blood pressure acting both centrally in the dorsomedial hypothalamus and peripherally. Sites of the peripheral hypertensive effect of leptin have not been identified. We previously reported that leptin enhanced activity of the carotid sinus nerve, which transmits chemosensory input from the carotid bodies (CBs) to the medullary centers, and this effect was abolished by nonselective blockers of Trp (transient receptor potential) channels. We searched our mouse CB transcriptome database and found that the Trpm7 (transient receptor potential melastatin 7) channel was the most abundant Trp channel. OBJECTIVE: To examine if leptin induces hypertension acting on the CB Trpm7. METHODS AND RESULTS: C57BL/6J (n=79), leptin receptor (LepRb) deficient db/db mice (n=22), and LepRb-EGFP (n=4) mice were used. CB Trpm7 and LepRb gene expression was determined and immunohistochemistry was performed; CB glomus cells were isolated and Trpm7-like current was recorded. Blood pressure was recorded continuously in (1) leptin-treated C57BL/6J mice with intact and denervated CB; (2) leptin-treated C57BL/6J mice, which also received a nonselective Trpm7 blocker FTY720 administered systemically or topically to the CB area; (3) leptin-treated C57BL/6J mice transfected with Trpm7 small hairpin RNA to the CB, and (4) Leprb deficient obese db/db mice before and after Leprb expression in CB. Leptin receptor and Trpm7 colocalized in the CB glomus cells. Leptin induced a nonselective cation current in these cells, which was inhibited by Trpm7 blockers. Leptin induced hypertension in C57BL/6J mice, which was abolished by CB denervation, Trpm 7 blockers, and Trpm7 small hairpin RNA applied to CBs. Leprb overexpression in CB of Leprb-deficient db/db mice demethylated the Trpm7 promoter, increased Trpm7 gene expression, and induced hypertension. CONCLUSIONS: We conclude that leptin induces hypertension acting on Trmp7 in CB, which opens horizons for new therapy.


Asunto(s)
Presión Sanguínea , Cuerpo Carotídeo/metabolismo , Hipertensión/inducido químicamente , Leptina , Receptores de Leptina/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/fisiopatología , Desnervación , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Transducción de Señal , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
2.
J Physiol ; 597(1): 151-172, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285278

RESUMEN

KEY POINTS: Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT: Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ FIO2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipoxia/fisiopatología , Leptina/fisiología , Ventilación Pulmonar/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Leptina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Leptina/fisiología
3.
J Appl Physiol (1985) ; 121(3): 816-827, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27418689

RESUMEN

The carotid body (CB) substantially influences breathing in premature infants by affecting the frequency of apnea and periodic breathing. In adult animals, inflammation alters the structure and chemosensitivity of the CB, yet it is not known if this pertains to neonates. We hypothesized that early postnatal inflammation leads to morphological and functional changes in the developing rat CB, which persists for 1 wk after the initial provoking insult. To test our hypothesis, we exposed rat pups at postnatal day 2 (P2) to lipopolysaccharide (LPS; 100 µg/kg) or saline (SAL) intraperitoneally. At P9-10 (1 wk after treatment), LPS-exposed animals had significantly more spontaneous intermittent hypoxic (IH) events, attenuated ventilatory responses to changes in oxygen tension (measured by whole body plethysmography), and attenuated hypoxic chemosensitivity of the carotid sinus nerve (measured in vitro), compared with SAL-exposed controls. These functional changes were associated with the following: 1) increased inflammatory cytokine mRNA levels; 2) decreased volume of supportive type II cells; and 3) elevated dopamine levels (a major inhibitory neuromodulator) within the CB. These findings suggest that early postnatal inflammation in newborn rats adversely affects the structure and function of the CB and is associated with increased frequency of intermittent desaturations, similar to the phenomenon observed in premature infants. Furthermore, this is the first newborn model of spontaneous intermittent desaturations that may be used to understand the mechanisms contributing to IH events in newborns.

4.
Adv Exp Med Biol ; 860: 187-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26303480

RESUMEN

The respiratory control system is not fully developed in newborn, and data suggest that adequate nutrition is important for the development of the respiratory control system. Infants need to be fed every 2-4 h to maintain appropriate energy levels, but a skip of feeding can occur due to social economical reasons or mild sickness of infants. Here, we asked questions if a short-term fasting (1) alters carotid body (CB) chemoreceptor activity and integrated function of the respiratory control system; (2) causes epigenetic modification within the respiratory control system. Mouse pups (

Asunto(s)
Cuerpo Carotídeo/fisiología , Epigénesis Genética , Ayuno/fisiología , Respiración , Animales , Animales Recién Nacidos , Ratones
5.
J Appl Physiol (1985) ; 117(7): 765-76, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25103977

RESUMEN

Obstructive sleep apnea causes chronic intermittent hypoxia (IH) and is associated with impaired glucose metabolism, but mechanisms are unknown. Carotid bodies orchestrate physiological responses to hypoxemia by activating the sympathetic nervous system. Therefore, we hypothesized that carotid body denervation would abolish glucose intolerance and insulin resistance induced by chronic IH. Male C57BL/6J mice underwent carotid sinus nerve dissection (CSND) or sham surgery and then were exposed to IH or intermittent air (IA) for 4 or 6 wk. Hypoxia was administered by decreasing a fraction of inspired oxygen from 20.9% to 6.5% once per minute, during the 12-h light phase (9 a.m.-9 p.m.). As expected, denervated mice exhibited blunted hypoxic ventilatory responses. In sham-operated mice, IH increased fasting blood glucose, baseline hepatic glucose output (HGO), and expression of a rate-liming hepatic enzyme of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK), whereas the whole body glucose flux during hyperinsulinemic euglycemic clamp was not changed. IH did not affect glucose tolerance after adjustment for fasting hyperglycemia in the intraperitoneal glucose tolerance test. CSND prevented IH-induced fasting hyperglycemia and increases in baseline HGO and liver PEPCK expression. CSND trended to augment the insulin-stimulated glucose flux and enhanced liver Akt phosphorylation at both hypoxic and normoxic conditions. IH increased serum epinephrine levels and liver sympathetic innervation, and both increases were abolished by CSND. We conclude that chronic IH induces fasting hyperglycemia increasing baseline HGO via the CSN sympathetic output from carotid body chemoreceptors, but does not significantly impair whole body insulin sensitivity.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Desnervación , Hiperglucemia/prevención & control , Hipoxia/complicaciones , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/fisiopatología , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
6.
Respir Physiol Neurobiol ; 185(1): 120-31, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22902305

RESUMEN

Breathing is a complex function that is dynamic, responsive, automatic and often unstable during early development. The carotid body senses dynamic changes in arterial oxygen and carbon dioxide tension and reflexly alters ventilation and plays an essential role in terminating apnea. The carotid body contributes 10-40% to baseline ventilation in newborns and has the greatest influence on breathing in premature infants who characteristically have unstable breathing leading to apnea of prematurity. In this review, we will discuss how both excessive and minimal contributions from the carotid body destabilizes breathing in premature infants and how exposures to hypoxia or infection can lead to changes in the sensitivity of the carotid body. We propose that inflammation/infection during a critical period of carotid body development causes acute and chronic changes in the carotid body contributing to a protracted course of intractable and severe apnea known to occur in a subset of premature infants.


Asunto(s)
Apnea/fisiopatología , Cuerpo Carotídeo/fisiopatología , Enfermedades del Prematuro/fisiopatología , Inflamación/fisiopatología , Animales , Apnea/etiología , Cuerpo Carotídeo/crecimiento & desarrollo , Cuerpo Carotídeo/patología , Humanos , Hipoxia/fisiopatología , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/patología , Inflamación/complicaciones
7.
Respir Physiol Neurobiol ; 185(1): 20-9, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22634368

RESUMEN

Mice are the most suitable species for understanding genetic aspects of postnatal developments of the carotid body due to the availability of many inbred strains and knockout mice. Our study has shown that the carotid body grows differentially in different mouse strains, indicating the involvement of genes. However, the small size hampers investigating functional development of the carotid body. Hypoxic and/or hyperoxic ventilatory responses have been investigated in newborn mice, but these responses are indirect assessment of the carotid body function. Therefore, we need to develop techniques of measuring carotid chemoreceptor neural activity from young mice. Many studies have taken advantage of the knockout mice to understand chemoreceptor function of the carotid body, but they are not always suitable for addressing postnatal development of the carotid body due to lethality during perinatal periods. Various inbred strains with well-designed experiments will provide useful information regarding genetic mechanisms of the postnatal carotid chemoreceptor development. Also, targeted gene deletion is a critical approach.


Asunto(s)
Cuerpo Carotídeo/crecimiento & desarrollo , Cuerpo Carotídeo/fisiología , Animales , Células Quimiorreceptoras/citología , Células Quimiorreceptoras/fisiología , Ratones , Ratones Noqueados
9.
Adv Exp Med Biol ; 758: 279-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23080173

RESUMEN

The purposes of this study were to: (1) establish an effective method to measure the release of ATP from the mouse carotid body (CB) and (2) determine the release of ATP from the CB of the DBA/2 J (high hypoxic responder) and A/J (low hypoxic responder) mouse in response to hypoxia and hypercapnia. An incubation chamber was constructed utilizing a Costar® Spin-X Centrifuge Tube Filter. The filter was coated with low melting point agarose to hold 4 CBs or 4 superior cervical ganglia (SCG). Hypoxia did not increase ATP release from the CB of either strain. ATP increased in response to a normoxic/hypercapnic challenge in the DBA/2 J's CB but not in the A/J's CB. ATP release from the SCG was affected by neither hypoxia nor hypercapnia in both strains. Thus, we have concluded: (1) we successfully established a chamber system to measure ATP released from the mouse CB; (2) ATP may not be an excitatory neurotransmitter in the CB of these mice under hypoxia; (3) ATP may be a neurotransmitter in the CB of the DBA/2 J mouse strain during hypercapnia.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cuerpo Carotídeo/metabolismo , Hipercapnia/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos DBA , Ganglio Cervical Superior/metabolismo
10.
J Physiol ; 590(16): 3807-19, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22615433

RESUMEN

The carotid body (CB) is the key oxygen sensing organ. While the expression of CB specific genes is relatively well studied in animals, corresponding data for the human CB are missing. In this study we used five surgically removed human CBs to characterize the CB transcriptome with microarray and PCR analyses, and compared the results with mice data. In silico approaches demonstrated a unique gene expression profile of the human and mouse CB transcriptomes and an unexpected upregulation of both human and mouse CB genes involved in the inflammatory response compared to brain and adrenal gland data. Human CBs express most of the genes previously proposed to be involved in oxygen sensing and signalling based on animal studies, including NOX2, AMPK, CSE and oxygen sensitive K+ channels. In the TASK subfamily of K+ channels, TASK-1 is expressed in human CBs, while TASK-3 and TASK-5 are absent, although we demonstrated both TASK-1 and TASK-3 in one of the mouse reference strains. Maxi-K was expressed exclusively as the spliced variant ZERO in the human CB. In summary, the human CB transcriptome shares important features with the mouse CB, but also differs significantly in the expression of a number of CB chemosensory genes. This study provides key information for future functional investigations on the human carotid body.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Inflamación/metabolismo , Oxígeno/metabolismo , Transcriptoma/fisiología , Adulto , Anciano , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Canales de Potasio/metabolismo , Análisis por Matrices de Proteínas , Transducción de Señal
11.
J Appl Physiol (1985) ; 112(3): 490-500, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22074716

RESUMEN

We have previously shown that the adult DBA/2J and A/J strains of mice differ in carotid body volume and morphology. The question has arisen whether these differences develop during the prenatal or postnatal period. Investigating morphological development of the carotid body and contributing genes in these mice can provide further understanding of the appropriate formation of the carotid body. We examined the carotid body of these mice from 1 day to 4 wk old for differences in volume, morphology, and gene expression of Gdnf family, Dlx2, Msx2, and Phox2b. The two strains showed divergent morphology starting at 1 wk old. The volume of the carotid body increased from 1 wk up to 2 wk old to the level of 4 wk old in the DBA/2J mice but not in the A/J mice. This corresponds with immunoreactivity of LC3, an autophagy marker, in A/J tissues at 10 days and 2 wk. The differences in gene expression were examined at 1 wk, 10 days, and 2 wk old, because divergent growth occurred during this period. The DBA/2J's carotid body at 1 wk old showed a greater expression of Msx2 than the A/J's carotid body. No other candidate genes showed consistent differences between the ages and strains. The difference was not seen in sympathetic cervical ganglia of 1 wk old, suggesting that the difference is carotid body specific. The current study indicates the critical postnatal period for developing distinctive morphology of the carotid body in these mice. Further studies are required to further elucidate a role of Msx2 and other uninvestigated genes.


Asunto(s)
Cuerpo Carotídeo/crecimiento & desarrollo , Cuerpo Carotídeo/metabolismo , Animales , Ganglios Simpáticos/metabolismo , Expresión Génica/genética , Factores Neurotróficos Derivados de la Línea Celular Glial/genética , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos DBA , Proteínas Asociadas a Microtúbulos/metabolismo , Ganglio Cervical Superior/metabolismo , Factores de Transcripción/genética
12.
Front Cell Neurosci ; 5: 19, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22013411

RESUMEN

The carotid body (CB) is a primary chemosensory organ for arterial hypoxia. Inhibition of K channels in chemosensory glomus cells (GCs) are considered to be responsible for hypoxic chemoreception and/or chemotransduction of the CB. Hypoxic sensitivity of large-conductance calcium-activated K (BK) channels has been established in the rat CB. Our previous work has shown the BK channel ß2 subunits are more expressed in the CB of the DBA/2J mouse than that of the A/J mouse. Because the DBA/2J mouse is more sensitive to hypoxia than the A/J mouse, our general hypothesis is that BK channels play a role in the sensitivity of the mouse CB to mild hypoxia. We performed vigorous analysis of the gene expression of α, ß2, and ß4 subunits of BK channels in the CB. We found that α and ß2 subunits were expressed more in the CB of the DBA/2J mice than that of the A/J mice. No differences were found in the ß4 subunit expression. These differences were not seen in the neighboring tissues, the superior cervical ganglion and the carotid artery, suggesting that the differences are CB specific. Further, the sensitivity of BK channels in GCs to mild hypoxia was examined in patch clamp experiments using undissociated CBs. Iberiotoxin significantly inhibited K current of GCs in the DBA/2J mice, but not in the A/J mice. When reducing PO(2) to ∼70 mmHg, K current reversibly decreased in GCs of the DBA/2J, but not of the A/J mice. In the presence of iberiotoxin, mild hypoxia did not inhibit K current in either strains. Thus, the data suggest that BK channels in GCs of the DBA/2J mice are sensitive to mild hypoxia. Differential expression of BK channel ß subunits in the CBs may, at least in part, explain the different hypoxic sensitivity in these mouse strains.

13.
Respir Physiol Neurobiol ; 176(3): 80-9, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21292043

RESUMEN

Do cat carotid bodies (CBs) increase their release of acetylcholine and ATP in response to H(2)S? Two CBs, incubated in a Krebs Ringer bicarbonate solution at 37 ° C, exhibited a normal response to hypoxia-increased release of acetylcholine (ACh) and ATP. They were challenged with several concentrations of Na(2)S, an H(2)S donor. H(2)S, a new gasotransmitter, is reported to open K(ATP) channels. Under normoxic conditions the CBs reduced their release of ACh and ATP below control values. They responded identically to pinacidil, a well-known K(ATP) channel opener. CB glomus cells exhibited a positive immunohistochemical signal for cystathione-ß-synthetase, a H(2)S synthesizing enzyme, and for a subunit of the K(ATP) channel. The data suggest that Na(2)S may have opened the glomus cells' K(ATP) channels, hyperpolarizing the cells, thus reducing their tonic release of ACh and ATP. Since during hypoxia H(2)S levels rise, the glomus cells responding very actively to hypoxia may be protected from over-exertion by the H(2)S opening of the K(ATP) channels.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Carotídeo/metabolismo , Sulfuro de Hidrógeno/metabolismo , Acetilcolina/antagonistas & inhibidores , Animales , Cuerpo Carotídeo/efectos de los fármacos , Gatos , Femenino , Hipoxia/metabolismo , Masculino , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Sulfuros/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
14.
Brain Res ; 1301: 20-33, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19761761

RESUMEN

The carotid body (CB) is a polymodal chemosensor of arterial blood located next to the internal carotid artery. The basic chemosensing unit is composed of the neurotransmitter (NT)-containing glomus cells (GCs) and the sensory afferent fibers synapsing onto the GCs. Nicotinic and muscarinic receptors have been found on both the sensory afferent fibers and on the GCs. Neural output from the CB (CBNO) increases when arterial blood perfusing it is hypoxic, hypoglycemic, hypercapnic, or acidic. The increased CBNO due to GC release of excitatory NTs must be preceded by an entrance of calcium into the GCs. With repeated release of ACh from the GCs, cholinergic receptors could become desensitized, particularly nicotinic receptors which function as calcium channels. The purpose of the present study was to see if adenosine (ADO), known to alter receptor sensitivities, could attenuate or eliminate any desensitization of the nicotinic receptors occurring during the repeated application of ACh. Cat CBs were harvested with techniques approved by the University's Animal Care/Use Committee. The GCs were cultured and prepared for detecting [Ca(++)](i) with standard techniques. Repeated application of ACh produced a progressively decreasing increase in [Ca(++)](i). With the use of ADO or an A2(A) ADO receptor agonist the decrease was avoided. Though ADO also increased GC [Ca(++)](i), the sum of ADO increase and ACh increase, when superfused separately, was less than the increase when they were both included in the same superfusion. This suggested the possible involvement of a new path in the action. Potential mechanisms to explain the phenomena are discussed.


Asunto(s)
Acetilcolina/farmacología , Adenosina/farmacología , Calcio/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Adenosina/análogos & derivados , Animales , Antihipertensivos/farmacología , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/metabolismo , Gatos , Células Cultivadas , Femenino , Colorantes Fluorescentes , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenetilaminas/farmacología , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Vasodilatadores/farmacología , Xantinas/farmacología
15.
Brain Res ; 1270: 39-44, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285968

RESUMEN

The carotid body (CB) is a polymodal sensor which increases its neural output to the nucleus tractus solitarii with a subsequent activation of several reflex cardiopulmonary responses. Current reports identify acetylcholine (ACh) and adenosine triphosphate (ATP) as two essential excitatory neurotransmitters in the cat and rat CBs. This study explored the impact of hypoxia, low glucose, and the two together on the release of both ACh and ATP from two incubated cat CBs. The CBs were prepared with standard procedures in accordance with the policies and regulations of the Institutional Animal Care and Use Committee. When normalized to their controls, a significant increase of ACh in the incubation medium was measured in response to hypoxia, low glucose, and the combined stimuli. When normalized to their controls, a significant increase in ATP in the incubation medium was measured in response to hypoxia and to the combined stimuli. Low glucose generated an increase in ATP which was not statistically significant (P>0.05). Second, normalizing the initial 3-4 or 2-3 min Time Segment of the challenge Stage to the final 3-4 or 2-3 min Time Segment of the control Stage for both ACh and ATP generated significant increases in response to hypoxia, low glucose (ACh only), and the combined stimuli. The data suggested the possibility that in the cat the increased CB neural output in response to low glucose might be due primarily to ACh.


Asunto(s)
Acetilcolina/metabolismo , Adenosina Trifosfato/metabolismo , Glucemia/metabolismo , Cuerpo Carotídeo/metabolismo , Hipoglucemia/metabolismo , Hipoxia/metabolismo , Animales , Cuerpo Carotídeo/efectos de los fármacos , Gatos , Femenino , Masculino , Oxígeno/sangre , Oxígeno/farmacología , Estimulación Química , Sacarosa/farmacología
16.
Brain Res ; 1241: 84-91, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18817755

RESUMEN

The ventilatory response to hypoxia depends on the carotid body function and sleep-wake states. Therefore, the response must be measured in a consistent sleep-wake state. In mice, EMG with behavioral indices (coordinated movements, CMs; myoclonic twitches, MTs) has been used to assess sleep-wake states. However, in neonatal mice EMG instrumentation could induce stress, altering their behavior and ventilation. Accordingly, we examined: (1) if EMG can be eliminated for assessing sleep-wake states; and (2) behavioral characteristics and carotid body-mediated respiratory control during sleep with EMG (EMG+) or without EMG (EMG-). Seven-day-old DBA/2J and A/J mice were divided into EMG+ and EMG- groups. In both strains, CMs occurred when EMG was high; MTs were present during silent/low EMG activity. The durations of high EMG activity and of CMs were statistically indifferent. Thus, CMs can be used to indicate wake state without EMG. The stress caused by EMG instrumentation may be distinctively manifested based on genetic background. Prolonged agitation was observed in some EMG+ DBA/2J (5 of 13), but not in A/J mice. The sleep time and MT counts were indifferent between the groups in DBA/2J mice. The EMG+ A/J group showed longer sleep time and less MT counts than the EMG- A/J group. Mean respiratory variables (baseline, hyperoxic/hypoxic responses) were not severely influenced by EMG+ in either strain. Individual values were more variable in EMG+ mice. Carotid body-mediated respiratory responses (decreased ventilation upon hyperoxia and increased ventilation upon mild hypoxia) during sleep were clearly observed in these neonatal mice with or without EMG instrumentation.


Asunto(s)
Cuerpo Carotídeo/fisiología , Reflejo/fisiología , Fenómenos Fisiológicos Respiratorios/genética , Sueño/genética , Estrés Psicológico/fisiopatología , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Electromiografía/efectos adversos , Genotipo , Hiperoxia/genética , Hiperoxia/fisiopatología , Hipoxia/genética , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Endogámicos DBA , Músculos Respiratorios/inervación , Músculos Respiratorios/fisiología , Especificidad de la Especie , Vigilia/genética
17.
Antioxid Redox Signal ; 9(6): 745-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17511590

RESUMEN

This brief review first touches on the origins of the earth's oxygen. It then identifies and locates the principal oxygen sensor in vertebrates, the carotid body (CB). The CB is unique in that in human subjects, it is the only sensor of lower than normal levels in the partial pressure of oxygen (hypoxia, HH). Another oxygen sensor, the aortic bodies, are mostly vestigial in higher vertebrates. At least they play a much smaller role than the CB. In such an important role, the many reflexes in response to CB stimulation by HH are presented. After briefly reviewing what CB stimulation does, the next topic is to describe how the CB chemotransduces HH into neural signals to the brain. Several mechanisms are known, but critical steps in the mechanisms of chemosensation and chemotransduction are still under investigation. Finally, a brief glance at the operation of the CB in chronic heart failure patients is presented. Specifically, the role of nitric oxide, NO, is discussed.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Cardiopatías/metabolismo , Oxígeno/metabolismo , Animales , Cuerpo Carotídeo/patología , Cardiopatías/patología , Humanos
18.
Respir Physiol Neurobiol ; 157(1): 93-105, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17284361

RESUMEN

Acetylcholine (ACh) has been considered an important excitatory neurotransmitter in the carotid body (CB). Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca(2+) from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K(+) and Ca(2+) channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. We discuss these issues in light of current knowledge of neuroscience.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Carotídeo/fisiología , Neurotransmisores/metabolismo , Animales , Humanos , Filogenia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Especificidad de la Especie
19.
Am J Physiol Lung Cell Mol Physiol ; 292(3): L704-15, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17098806

RESUMEN

The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P

Asunto(s)
Biomarcadores/metabolismo , Cuerpo Carotídeo/metabolismo , Perfilación de la Expresión Génica , Expresión Génica/fisiología , Animales , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos A , Ratones Endogámicos DBA , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...