Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Heliyon ; 10(17): e36727, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296030

RESUMEN

Liver fibrosis is a critical global health challenge, often leading to severe liver diseases without timely intervention. Choline deficiency has been linked to metabolic dysfunction associated steatohepatitis (MASH) and liver fibrosis, suggesting choline supplementation as a potential therapeutic approach. This study aimed to explore the therapeutic potential of choline supplementation in liver fibrosis resolution and its effects on cholesterol homeostasis using a mouse model with induced liver fibrosis. Our findings reveal that choline supplementation significantly decreases blood lactate dehydrogenase (LDH) and non-high-density lipoprotein cholesterol (non-HDL-C) levels. Transcriptome analysis showed that choline supplementation primarily induces genes related to cholesterol homeostasis, suggesting a significant impact on liver cholesterol synthesis. However, choline supplementation did not significantly alter the expression of fibrosis-related, choline metabolism-related, or epigenetics-related genes. This study provides novel insights into the role of choline in liver health and cholesterol metabolism, potentially informing treatments for liver fibrosis and related conditions.

2.
Genes Cells ; 29(9): 722-734, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977420

RESUMEN

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.


Asunto(s)
Proteínas de Ciclo Celular , Respuesta al Choque Térmico , Chaperonas de Histonas , Histonas , Factores de Transcripción , Humanos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Células HeLa , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Acetilación , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Fibroblastos/metabolismo , Adaptación Fisiológica/genética
3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473789

RESUMEN

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Intervención Coronaria Percutánea , Animales , Ratones , Ventrículos Laterales , Inhibidores de Histona Desacetilasas , Proliferación Celular , Mamíferos
4.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520561

RESUMEN

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Asunto(s)
Discapacidades del Desarrollo , ARN Polimerasa III , Factores de Transcripción TFIII , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Alelos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Discapacidad Intelectual/genética , Mutación , Linaje , Fenotipo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Transcripción Genética , Pez Cebra/genética
5.
Mol Cell ; 84(5): 867-882.e5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38295804

RESUMEN

The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6's recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Superhelicoidal/genética , Cohesinas , ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromosomas/metabolismo
6.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907238

RESUMEN

Nuclear expression of protein kinase CK2α is reportedly elevated in human carcinomas, but mechanisms underlying its variable localization in cells are poorly understood. This study demonstrates a functional connection between nuclear CK2 and gene expression in relation to cell proliferation. Growth stimulation of quiescent human normal fibroblasts and phospho-proteomic analysis identified a pool of CK2α that is highly phosphorylated at serine 7. Phosphorylated CK2α translocates into the nucleus, and this phosphorylation appears essential for nuclear localization and catalytic activity. Protein signatures associated with nuclear CK2 complexes reveal enrichment of apparently unique transcription factors and chromatin remodelers during progression through the G1 phase of the cell cycle. Chromatin immunoprecipitation-sequencing profiling demonstrated recruitment of CK2α to active gene loci, more abundantly in late G1 phase than in early G1, notably at transcriptional start sites of core histone genes, growth stimulus-associated genes, and ribosomal RNAs. Our findings reveal that nuclear CK2α complexes may be essential to facilitate progression of the cell cycle, by activating histone genes and triggering ribosomal biogenesis, specified in association with nuclear and nucleolar transcriptional regulators.


Asunto(s)
Redes Reguladoras de Genes , Histonas , Humanos , Ciclo Celular/genética , Proliferación Celular/genética , Proteómica
7.
Nutrients ; 15(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764741

RESUMEN

Nutrient imbalances during gestation are a risk factor for hypertension in offspring. Although the effects of prenatal nutritional deficiency on the development of hypertension and cardiovascular diseases in adulthood have been extensively documented, its underlying mechanisms remain poorly understood. In this study, we aimed to elucidate the precise role and functional significance of epigenetic modifications in the pathogenesis of hypertension. To this end, we integrated methylome and transcriptome data to identify potential salt-sensitive hypertension genes using the kidneys of stroke-prone spontaneously hypertensive rat (SHRSP) pups exposed to a low-protein diet throughout their fetal life. Maternal protein restriction during gestation led to a positive correlation between DNA hypermethylation of the renal prostaglandin E receptor 1 (Ptger1) CpG island and high mRNA expression of Ptger1 in offspring, which is consistently conserved. Furthermore, post-weaning low-protein or high-protein diets modified the Ptger1 DNA hypermethylation caused by fetal malnutrition. Here, we show that this epigenetic variation in Ptger1 is linked to disease susceptibility established during fetal stages and could be reprogrammed by manipulating the postnatal diet. Thus, our findings clarify the developmental origins connecting the maternal nutritional environment and potential epigenetic biomarkers for offspring hypertension. These findings shed light on hypertension prevention and prospective therapeutic strategies.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Ratas , Animales , Humanos , Metilación de ADN , Dieta con Restricción de Proteínas/efectos adversos , Subtipo EP1 de Receptores de Prostaglandina E/genética , Hipertensión/genética , Riñón/metabolismo , Epigénesis Genética , Ratas Endogámicas SHR , ADN/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/metabolismo
8.
Nat Commun ; 14(1): 5647, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726281

RESUMEN

Cohesin regulates gene expression through context-specific chromatin folding mechanisms such as enhancer-promoter looping and topologically associating domain (TAD) formation by cooperating with factors such as cohesin loaders and the insulation factor CTCF. We developed a computational workflow to explore how three-dimensional (3D) structure and gene expression are regulated collectively or individually by cohesin and related factors. The main component is CustardPy, by which multi-omics datasets are compared systematically. To validate our methodology, we generated 3D genome, transcriptome, and epigenome data before and after depletion of cohesin and related factors and compared the effects of depletion. We observed diverse effects on the 3D genome and transcriptome, and gene expression changes were correlated with the splitting of TADs caused by cohesin loss. We also observed variations in long-range interactions across TADs, which correlated with their epigenomic states. These computational tools and datasets will be valuable for 3D genome and epigenome studies.


Asunto(s)
Proteínas de Ciclo Celular , Transcriptoma , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cromatina/genética , Cohesinas
9.
Stem Cell Reports ; 18(5): 1211-1226, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37059101

RESUMEN

Soft tissue sarcomas (STSs) are a heterogeneous group of tumors that originate from mesenchymal cells. p53 is frequently mutated in human STS. In this study, we found that the loss of p53 in mesenchymal stem cells (MSCs) mainly causes adult undifferentiated soft tissue sarcoma (USTS). MSCs lacking p53 show changes in stem cell properties, including differentiation, cell cycle progression, and metabolism. The transcriptomic changes and genetic mutations in murine p53-deficient USTS mimic those seen in human STS. Furthermore, single-cell RNA sequencing revealed that MSCs undergo transcriptomic alterations with aging-a risk factor for certain types of USTS-and that p53 signaling decreases simultaneously. Moreover, we found that human STS can be transcriptomically classified into six clusters with different prognoses, different from the current histopathological classification. This study paves the way for understanding MSC-mediated tumorigenesis and provides an efficient mouse model for sarcoma studies.


Asunto(s)
Células Madre Mesenquimatosas , Sarcoma , Adulto , Animales , Humanos , Ratones , Carcinogénesis/patología , Transformación Celular Neoplásica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Stem Cells ; 41(3): 271-286, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36472570

RESUMEN

Human induced pluripotent stem cells (iPSCs) require high levels of methionine (Met). Met deprivation results in a rapid decrease in intracellular S-adenosyl-methionine (SAM), poising human iPSCs for differentiation and leading to the apoptosis of undifferentiated cells. Met deprivation triggers rapid metabolic changes, including SAM, followed by reversible epigenetic modifications. Here, we show that short-term Met deprivation impairs the pluripotency network through epigenetic modification in a 3D suspension culture. The trimethylation of lysine 4 on histone H3 (H3K4me3) was drastically affected compared with other histone modifications. Short-term Met deprivation specifically affects the transcription start site (TSS) region of genes, such as those involved in the transforming growth factor ß pathway and cholesterol biosynthetic process, besides key pluripotent genes such as NANOG and POU5F1. The expression levels of these genes decreased, correlating with the loss of H3K4me3 marks. Upon differentiation, Met deprivation triggers the upregulation of various lineage-specific genes, including key definitive endoderm genes, such as GATA6. Upon differentiation, loss of H3K27me3 occurs in many endodermal genes, switching from a bivalent to a monovalent (H3K4me3) state. In conclusion, Met metabolism maintains the pluripotent network with histone marks, and their loss potentiates differentiation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Metionina , Humanos , Metionina/genética , Metionina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Código de Histonas , Células Madre Embrionarias/metabolismo , Diferenciación Celular/genética , Epigénesis Genética , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo
11.
Blood Adv ; 7(8): 1577-1593, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269819

RESUMEN

Aberrant expression of ecotropic viral integration site-1 (EVI1+) is associated with very poor outcomes in acute myeloid leukemia (AML), mechanisms of which are only partially understood. Using the green fluorescent protein reporter system to monitor EVI1 promoter activity, we demonstrated that Evi1high KMT2A-MLLT1-transformed AML cells possess distinct features from Evi1low cells: the potential for aggressive disease independent of stem cell activity and resistance to cytotoxic chemotherapy, along with the consistent gene expression profiles. RNA sequencing and chromatin immunoprecipitation sequencing in EVI1-transformed AML cells and normal hematopoietic cells combined with functional screening by cell proliferation-related short hairpin RNAs revealed that the erythroblast transformation-specific transcription factor ERG (E26 transformation-specific [ETS]-related gene) and cyclin D1 were downstream targets and therapeutic vulnerabilities of EVI1+ AML. Silencing Erg in murine EVI1+ AML models severely impaired cell proliferation, chemoresistance, and leukemogenic capacity. Cyclin D1 is also requisite for efficient EVI1-AML development, associated with gene expression profiles related to chemokine production and interferon signature, and T- and natural killer-cell exhaustion phenotype, depending on the interferon gamma (IFN-γ)/STAT1 pathway but not on CDK4/CDK6. Inhibiting the IFN-γ/STAT1 pathway alleviated immune exhaustion and impaired EVI1-AML development. Overexpression of EVI1 and cyclin D1 was associated with IFN-γ signature and increased expression of chemokines, with increased exhaustion molecules in T cells also in human AML data sets. These data collectively suggest that ERG and cyclin D1 play pivotal roles in the biology of EVI1+ AML, where ERG contributes to aggressive disease nature and chemoresistance, and cyclin D1 leads to IFN-γ signature and exhausted T-cell phenotypes, which could potentially be targeted.


Asunto(s)
Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Ciclina D1/genética , Proto-Oncogenes , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Regulador Transcripcional ERG/genética , Factores de Transcripción/genética
12.
Nat Commun ; 13(1): 4355, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906200

RESUMEN

Transcriptional regulation by RNA polymerase II is associated with changes in chromatin structure. Activated and promoter-bound heat shock transcription factor 1 (HSF1) recruits transcriptional co-activators, including histone-modifying enzymes; however, the mechanisms underlying chromatin opening remain unclear. Here, we demonstrate that HSF1 recruits the TRRAP-TIP60 acetyltransferase complex in HSP72 promoter during heat shock in a manner dependent on phosphorylation of HSF1-S419. TRIM33, a bromodomain-containing ubiquitin ligase, is then recruited to the promoter by interactions with HSF1 and a TIP60-mediated acetylation mark, and cooperates with the related factor TRIM24 for mono-ubiquitination of histone H2B on K120. These changes in histone modifications are triggered by phosphorylation of HSF1-S419 via PLK1, and stabilize the HSF1-transcription complex in HSP72 promoter. Furthermore, HSF1-S419 phosphorylation is constitutively enhanced in and promotes proliferation of melanoma cells. Our results provide mechanisms for HSF1 phosphorylation-dependent establishment of an active chromatin status, which is important for tumorigenesis.


Asunto(s)
Cromatina , Histonas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Lisina Acetiltransferasa 5/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Factores de Transcripción/genética
13.
Curr Issues Mol Biol ; 44(4): 1587-1596, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35723366

RESUMEN

Epithelial ovarian cancer is classified into four major histological subtypes: serous, clear cell, endometrioid and mucinous. Ovarian clear cell carcinoma (OCCC) responds poorly to conventional chemotherapies and shows poor prognosis. Thus, there is a need to develop new drugs for the treatment of OCCC. In this study, we performed CRISPR/Cas9 screens against OCCC cell lines and identified candidate genes important for their proliferation. We found that quite different genes are required for the growth of ARID1A and PIK3CA mutant and wild-type OCCC cell lines, respectively. Furthermore, we found that the epigenetic regulator KDM2A and the translation regulator PAIP1 may play important roles in the growth of ARID1A and PIK3CA mutant, but not wild-type, OCCC cells. The results of our CRISPR/Cas9 screening may be useful in elucidating the molecular mechanism of OCCC tumorigenesis and in developing OCCC-targeted drugs.

14.
Sci Adv ; 8(23): eabn7063, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687682

RESUMEN

Genome function depends on regulated chromosome folding, and loop extrusion by the protein complex cohesin is essential for this multilayered organization. The chromosomal positioning of cohesin is controlled by transcription, and the complex also localizes to stalled replication forks. However, the role of transcription and replication in chromosome looping remains unclear. Here, we show that reduction of chromosome-bound RNA polymerase weakens normal cohesin loop extrusion boundaries, allowing cohesin to form new long-range chromosome cis interactions. Stress response genes induced by transcription inhibition are also shown to act as new loop extrusion boundaries. Furthermore, cohesin loop extrusion during early S phase is jointly controlled by transcription and replication units. Together, the results reveal that replication and transcription machineries are chromosome-folding regulators that block the progression of loop-extruding cohesin, opening for new perspectives on cohesin's roles in genome function and stability.

15.
Nat Commun ; 13(1): 3218, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680859

RESUMEN

Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Humanos , Cohesinas
16.
Cancer Sci ; 113(6): 2034-2043, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35377528

RESUMEN

Ovarian cancer is the fifth most common cause of cancer-related death in women. Ovarian clear cell carcinoma (OCCC) is a chemotherapy-resistant epithelial ovarian cancer with poor prognosis. As a basis for the development of therapeutic agents that could improve the prognosis of OCCC, we performed a screen for proteins critical for the tumorigenicity of OCCC using the CRISPR/Cas9 system. Here we show that knockdown of the phosphate exporter XPR1/SLC53A1 induces the growth arrest and apoptosis of OCCC cells in vitro. Moreover, we show that knockdown of XPR1/SLC53A1 inhibits the proliferation of OCCC cells xenografted into immunocompromised mice. These results suggest that XPR1/SLC53A1 plays a critical role in the tumorigenesis of OCCC cells. We speculate that XPR1/SLC53A1 might be a promising molecular target for the therapeutic treatment of OCCC.


Asunto(s)
Adenocarcinoma de Células Claras , Neoplasias Ováricas , Adenocarcinoma de Células Claras/patología , Animales , Carcinoma Epitelial de Ovario/genética , Femenino , Humanos , Ratones , Neoplasias Ováricas/patología , Fosfatos/uso terapéutico , Pronóstico
17.
Genes Dev ; 36(1-2): 84-102, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992147

RESUMEN

The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2-H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.


Asunto(s)
Histonas , Trofoblastos , Animales , Diferenciación Celular/genética , Femenino , Histonas/genética , Histonas/metabolismo , Mamíferos , Ratones , Placenta , Embarazo , Células Madre , Trofoblastos/metabolismo
18.
Gene ; 811: 146083, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856363

RESUMEN

Nearly three hundred thousand female patients are diagnosed with ovarian cancer in the world annually, and this number shows an increasing trend. However, characteristic symptoms caused by ovarian cancer are so few that early diagnosis remains challenging, and an effective screening method has not yet been established. Here, we conducted a case-control study in Japan to analyze the association between cervicovaginal microbiome and ovarian cancer, using 16S rRNA amplicon sequencing. Analysis of DNA extracted from cervical smear samples revealed Lactobacillus-dominant and Lactobacillus-deficient, highly-diversified bacterial communities in premenopausal and postmenopausal healthy controls, respectively, as reported for vaginal microbiota previously. We found that cervicovaginal microbiota in ovarian cancer patients, regardless of their menopausal status, were frequently a diversified community and similar to those in healthy subjects at postmenopausal ages. The diverse microbiota was associated with the major histotypes of epithelial ovarian cancer, including serous ovarian cancer and ovarian clear cell cancer. The present study implies the potential of a cervicovaginal microbiome biomarker in screening ovarian cancer in premenopausal women.


Asunto(s)
Carcinoma Epitelial de Ovario/microbiología , Cuello del Útero/microbiología , Microbiota , Neoplasias Ováricas/microbiología , Vagina/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Técnicas de Tipificación Bacteriana/métodos , Biomarcadores , Estudios de Casos y Controles , ADN Bacteriano , Femenino , Humanos , Japón , Lactobacillus/clasificación , Lactobacillus/genética , Metagenoma , Persona de Mediana Edad , Posmenopausia , Premenopausia , ARN Ribosómico 16S , Adulto Joven
19.
FEBS Open Bio ; 12(3): 582-593, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34965029

RESUMEN

Certain cancers, such as ovarian clear cell carcinoma (OCCC), display high levels of genetic variation between patients, making it difficult to develop effective therapies. In order to identify novel genes critical to OCCC growth, we carried out a comprehensive CRISPR-Cas9 knockout screen against cell growth using an OCCC cell line and a normal ovarian surface epithelium cell line. We identified the gene encoding DHX38/PRP16, an ATP-dependent RNA helicase involved in splicing, as critical for the growth and tumorigenesis of OCCC. DHX38/PRP16 knockdown in OCCC cells, but not normal cells, induces apoptosis and impairs OCCC tumorigenesis in a mouse model. Our results suggest that DHX38/PRP16 may play a role in OCCC tumorigenesis and could potentially be a promising therapeutic target.


Asunto(s)
Adenocarcinoma de Células Claras , Neoplasias Ováricas , Factores de Empalme de ARN , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patología , Animales , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/uso terapéutico
20.
Dis Model Mech ; 14(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779479

RESUMEN

Mutations in human MAB21L1 cause aberrations in lens ectoderm morphogenesis and lead to congenital cerebellar, ocular, craniofacial and genital (COFG) syndrome. Murine Mab21l1-null mutations cause severe cell-autonomous defects in lens formation, leading to microphthalmia; therefore, Mab21l1-null mice are used as a mouse model for COFG syndrome. In this study, we investigated the early-onset single-cell-level phenotypes of murine Mab21l1-null lens ectoderms using electron microscopy and single-cell RNA sequencing (scRNA-seq). Electron microscopy and immunohistochemical analyses indicated endoplasmic reticulum stress at the 24- to 26-somite stage in Mab21l1-null lens placodes. scRNA-seq analysis revealed that 131 genes were downregulated and 148 were upregulated in Mab21l1-null lens ectoderms relative to the wild type. We successfully identified 21 lens-specific genes that were downregulated in Mab21l1-null cells, including three key genes involved in lens formation: Pitx3, Maf and Sfrp2. Moreover, gene ontology analysis of the 279 differentially expressed genes indicated enrichment in housekeeping genes associated with DNA/nucleotide metabolism prior to cell death. These findings suggest that MAB21L1 acts as a nuclear factor that modulates not only lens-specific gene expression but also DNA/nucleotide metabolic processes during lens placode formation.


Asunto(s)
Proteínas de Homeodominio , Cristalino , Animales , Ectodermo/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Cristalino/metabolismo , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...