Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 32(8): 645-663, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625870

RESUMEN

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/fisiología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Transporte Biológico , Hidrolasas de Éster Carboxílico/genética , Citoplasma/metabolismo , Lipasa/metabolismo , Glicoproteínas de Membrana/genética , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Oxid Med Cell Longev ; 2012: 326731, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848780

RESUMEN

3-Morpholinosydnonimine (SIN-1) is used as a donor of peroxynitrite (ONOO(-)) in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s) in the medium, rather than ONOO(-), exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.


Asunto(s)
Bicarbonatos/farmacología , Medios de Cultivo/química , Molsidomina/análogos & derivados , Animales , Muerte Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cisteína/farmacología , Glutatión/deficiencia , Glutatión/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Modelos Biológicos , Molsidomina/química , Molsidomina/metabolismo , Molsidomina/toxicidad , Células PC12 , Ratas , Bicarbonato de Sodio/química , Hidróxido de Sodio/química , Compuestos de Sulfhidrilo/farmacología , Factores de Tiempo
3.
Biol Pharm Bull ; 35(7): 1105-17, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22791159

RESUMEN

Treatment of PC12 cells with fungus-derived alkaloid neoechinulin A for more than 12 h renders the cells resistant to subsequent superoxide (O2⁻)/nitric oxide (NO) insults derived from 3-morpholinosydnonimine (SIN-1). However, the underlying mechanism(s) remains largely unclear. To elucidate the mechanism(s), we assessed the specificity of the cytoprotection afforded by neoechinulin A treatment using other cytocidal stressors and also clarified the resulting cellular alterations, focusing on the antioxidant and metabolic enzymes systems. Neoechinulin A treatment for more than 12 h endowed PC12 cells with significant resistance to transient NO toxicity, but not persistent NO toxicity, bolus H2O2 toxicity, or oxidative insult from the redox cycling quinone menadione. Cellular antioxidant system profiling revealed no substantial potentiation of the activity of any antioxidant enzyme in lysate from the neoechinulin A-treated cells excluding glutathione (GSH) content, which was significantly decreased (>50%), resulting in a proportional compromise in the thiol-reducing activity of the intact cells. In addition, no differences were observed in the activity for any nicotinamide adenine dinucleotide (phosphate) reduced form (NAD(P)H)-generating enzyme, steady-state NAD(P)H/nicotinamide adenine dinucleotide (phosphate) oxidized form (NAD(P)⁺) ratios, or the levels of total NAD(P)H. Nevertheless, the neoechinulin A-treated intact cells exhibited increased NAD(P)H redox turnover when driven by extracellular tetrazolium. The structurally inactive analog preechinulin failed to protect cells against NO toxicity or induce these alterations, suggesting their link with the cytoprotective mechanism. These results suggest that neoechinulin A, despite disabling the GSH defense system, confers cytoprotection against nitrosative stresses by elevating the cellular reserve capacity for NAD(P)H generation, which could offset crippling of energy-supplying systems due to nitrosative stress.


Asunto(s)
Citoprotección/efectos de los fármacos , Alcaloides Indólicos/farmacología , Óxido Nítrico/toxicidad , Piperazinas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citoprotección/fisiología , Glutatión/metabolismo , Molsidomina/análogos & derivados , Molsidomina/farmacología , Nitrocompuestos/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Células PC12 , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Transferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...