RESUMEN
Invited for the cover of this issue is the group of Hirokazu Tsukamoto at Tohoku University (current affiliation: Yokohama University of Pharmacy). The image depicts anti-selective arylative cyclization reactions of alkynyl aldehydes with arylboronic acids under palladium catalysis in methanol to afford endo- and exo-cyclic products. Read the full text of the article at 10.1002/chem.202203068.
RESUMEN
Palladium(0)/monophosphine complexes catalyze anti-selective alkylative, arylative, and alkynylative cyclizations of alkynyl electrophiles with organometallic reagents. The remarkable anti-selectivity results from novel oxidative addition, that is, the nucleophilic attack of electron-rich palladium(0) on the electrophile across the alkyne followed by transmetalation and reductive elimination ("anti-Wacker"-type cyclization). With regard to 5-alkynals, triphenylphosphine (PPh3 )-ligated palladium(0) catalyzes the cyclization of terminal alkynes and conjugated alkenyl- or alkynyl-substituted ones to afford 2-cyclohexen-1-ol and 2-alkylidene-cyclopentanol derivatives, respectively. For 6-alkyl- or 6-aryl-5-alkynals, the cyclization does not proceed with the palladium/PPh3 catalyst; however, it does proceed with palladium/tricyclohexylphosphine (PCy3 ), to yield the former products predominantly. Remarkably, the latter catalyst completely switches the regioselectivity in the cyclization of the conjugated diyne-aldehydes. Notably, palladium/PPh3 -catalyzed cyclizations also proceed with other organometallics or even without them.
RESUMEN
Pd/P(c-C6H11)3-catalyzed alkynyliminium ion cyclization in the presence of organoboronic acids affords stereodefined N-alkyl-3-alkylidenepyrrolidines. The distinctive cis-selective addition of the boronic acids and the iminium ions across the alkyne would result from favored 5-exo- or 6-exo-dig cyclization through oxidative addition of the formaldiminium ions to Pd(0).